A sufficient condition for the absence of the sign problem in the fermionic quantum Monte-Carlo algorithm

PDF Version Also Available for Download.

Description

Quantum Monte-Carlo (QMC) simulations involving fermions have the notorious sign problem. Some well-known exceptions of the auxiliary field QMC algorithm rely on the factorizibility of the fermion determinant. Recently, a fermionic QMC algorithm has been found in which the fermion determinant may not necessarily factorizable, but can instead be expressed as a product of complex conjugate pairs of eigenvalues, thus eliminating the sign problem for a much wider class of models. In this paper, we present general conditions for the applicability of this algorithm and point out that it is deeply related to the time reversal symmetry of the fermion ... continued below

Physical Description

15 pages

Creation Information

Wu, Congjun; Zhang, Shou-Cheng & /Stanford U., Phys. Dept. January 15, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Quantum Monte-Carlo (QMC) simulations involving fermions have the notorious sign problem. Some well-known exceptions of the auxiliary field QMC algorithm rely on the factorizibility of the fermion determinant. Recently, a fermionic QMC algorithm has been found in which the fermion determinant may not necessarily factorizable, but can instead be expressed as a product of complex conjugate pairs of eigenvalues, thus eliminating the sign problem for a much wider class of models. In this paper, we present general conditions for the applicability of this algorithm and point out that it is deeply related to the time reversal symmetry of the fermion matrix. We apply this method to various models of strongly correlated systems at all doping levels and lattice geometries, and show that many novel phases can be simulated without the sign problem.

Physical Description

15 pages

Source

  • Journal Name: Phys.Rev.B71:155115,2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-13902
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 970448
  • Archival Resource Key: ark:/67531/metadc934491

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 15, 2010

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 15, 2016, 3:33 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wu, Congjun; Zhang, Shou-Cheng & /Stanford U., Phys. Dept. A sufficient condition for the absence of the sign problem in the fermionic quantum Monte-Carlo algorithm, article, January 15, 2010; United States. (digital.library.unt.edu/ark:/67531/metadc934491/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.