Leonid meteor ablation, energy exchange and trail morphology

PDF Version Also Available for Download.

Description

This paper describes theoretical model studies of the interaction of Leonid meteoroids with the earth's atmosphere. Subject to some modest-to-strenuous approximations we compute the rates of ablation and deceleration, energy deposition, and terminal altitudes of the meteors as functions of their initial mass and bulk density, velocity, trajectory entry angle, drag coefficient, heat of ablation, and an ablation energy transfer fraction. We find that the dominant energy deposition in the atmosphere is associated with the stopping of the ablated meteor particles and vapor by the surrounding air. Then having computed the energy deposition rates versus altitude we compute the hydrodynamic ... continued below

Physical Description

11 p.

Creation Information

Zinn, John; Judd, O'Dean P. & ReVelle, D. O. (Douglas O.) January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper describes theoretical model studies of the interaction of Leonid meteoroids with the earth's atmosphere. Subject to some modest-to-strenuous approximations we compute the rates of ablation and deceleration, energy deposition, and terminal altitudes of the meteors as functions of their initial mass and bulk density, velocity, trajectory entry angle, drag coefficient, heat of ablation, and an ablation energy transfer fraction. We find that the dominant energy deposition in the atmosphere is associated with the stopping of the ablated meteor particles and vapor by the surrounding air. Then having computed the energy deposition rates versus altitude we compute the hydrodynamic and radiative expansion of the hot wake material in the radial direction, along with the associated air chemistry. From the computed results we can then plot two-dimensional temperature contours -- as functions of the instantaneous distance behind the meteor and radial distance from the center of the wake, at various altitudes along the meteor's path. We also compute the rates of emission of radiation and the radiative efficiency, and discuss comparisons with observations.

Physical Description

11 p.

Source

  • Submitted to: COSPAR 2002, Houston, TX, October 2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-6807
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976417
  • Archival Resource Key: ark:/67531/metadc934317

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 12:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 16

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zinn, John; Judd, O'Dean P. & ReVelle, D. O. (Douglas O.). Leonid meteor ablation, energy exchange and trail morphology, article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc934317/: accessed April 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.