The performance of measurement-based simple models for the x-band complex permittivity of 370 ohms/sq. Kapton XC

PDF Version Also Available for Download.

Description

The X-band complex permittivity of a commercially-available, carbon loaded, polyamide film is measured. Simple though approximate models are obtained which are shown to be necessary and suitable for analytic or computational modeling of thin absorbing structures realized with the thin lossy film. The utility of each model is tested against experimental results for thin high-impedance surface (HIS) enhanced Salisbury absorbers, enhanced in the sense that the HIS augmented absorber is much thinner than a conventional Salisbury absorber. Kapton XC(reg.) is a commercially-available, carbon-loaded polyamide film manufactured by Dupont(reg.). Though these films are exceptionally durable and available in a range of ... continued below

Creation Information

Glover, Brian B; Whites, Kieth W & Amert, Tony January 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The X-band complex permittivity of a commercially-available, carbon loaded, polyamide film is measured. Simple though approximate models are obtained which are shown to be necessary and suitable for analytic or computational modeling of thin absorbing structures realized with the thin lossy film. The utility of each model is tested against experimental results for thin high-impedance surface (HIS) enhanced Salisbury absorbers, enhanced in the sense that the HIS augmented absorber is much thinner than a conventional Salisbury absorber. Kapton XC(reg.) is a commercially-available, carbon-loaded polyamide film manufactured by Dupont(reg.). Though these films are exceptionally durable and available in a range of surface resistivities, their effective permittivity is complex valued and, therefore, their sheet impedance is frequency dependent as is typical of carbon-loaded dielectrics. We have measured the X-band complex permittivity of Kapton XC(reg.) with a manufacture's quoted direct current (DC) sheet resistivity of approximately 370 {Omega}/sq. and thicknesses of 40.0 {mu}m. This study showed the need for relatively precise knowledge of the real part of a carbon particulate loaded, lossy thin film's permittivity in order to accurately engineer the reflection coefficient of high-impedance surface enhanced electromagnetic absorbers. Specifically, simple, approximate models can be obtained for the X-band complex pennittivity of commercially available, carbon loaded, 370 {Omega}/sq., Kapton XC(reg.) thin film. These simple, approximate models can be used in the analytic modeling of high-impedance surface enhanced X-band absorbers or computational modeling of other possibly more complicated absorbing structures which are composed, in part, of 370 {Omega}/sq. Kapton XC(reg.) and designed to operate within the X-band. Finally, the results of this study illustrate the need for simgle models for calculating the complex permittivity spectra of 370 {Omega}/sq. Kapton XC(reg.) over a relatively broad bandwidth (1-20 GHz) to facilitate accurate analytical and computational modeling.

Source

  • IEEE International Symposium on Antennas and Propagation ; June 1, 2009 ; North Charleston, SC, USA

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-09-00226
  • Report No.: LA-UR-09-226
  • Grant Number: AC52-06NA25396
  • Office of Scientific & Technical Information Report Number: 956504
  • Archival Resource Key: ark:/67531/metadc934217

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 12:45 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Glover, Brian B; Whites, Kieth W & Amert, Tony. The performance of measurement-based simple models for the x-band complex permittivity of 370 ohms/sq. Kapton XC, article, January 1, 2009; [New Mexico]. (digital.library.unt.edu/ark:/67531/metadc934217/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.