Modeling daily flow patterns individuals to characterize disease spread

Jeanine Smallwood, T-7, 180974
James M. Hyman, T-7, 082092
Pitu B. Mirchandani, Univ./of AZ

Submitted to:
Institute for Operations Research and Management Science Conf.
San Jose, CA
November 17-20, 2002
MODELLING DAILY FLOW PATTERNS OF INDIVIDUALS TO CHARACTERIZE DISEASE SPREAD

Abstract: The effect of an individual's travels throughout a day on the spread of disease is examined using a deterministic SIR model. We determine which spatial and demographic characteristics most contribute to the disease spread and whether the progression of the disease can be slowed by appropriate vaccination of people belonging to a specific location-type.
Modelling daily flow patterns of individuals to characterize disease spread

Jeanine Smallwood
Program in Applied Mathematics
University of Arizona

Pitu B. Mirchandani
Systems and Industrial Engineering Dept.
University of Arizona

Mac Hyman
Los Alamos National Laboratory

November 17, 2002
Outline

• Determining Core Groups for a population

• Calculation of R_0 for individuals and demographic subgroups

• Overview of TRANSIMS data

• SIR model discussion

• Conclusions and Future Work
Core Subgroups

- Want to find which demographic subgroups are active spreaders of the disease

- Want to find if any spatial characteristics are associated with active spreaders

- First use simulation data from TRANSIMS to answer these questions
TRANSIMS data format

TRANSIMS data is in the following form:

<table>
<thead>
<tr>
<th>ID</th>
<th>Loc</th>
<th>Arrival Time</th>
<th>Departure Time</th>
<th>Reason for Being</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4225</td>
<td>0</td>
<td>6.6667</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>49296</td>
<td>6.6667</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>21677</td>
<td>9.6667</td>
<td>9.8333</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>51560</td>
<td>10.1667</td>
<td>11.6667</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>52467</td>
<td>12</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>33005</td>
<td>13.1667</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4225</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>10917</td>
<td>3</td>
<td>3.5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4225</td>
<td>4</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>73872</td>
<td>16.5</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4225</td>
<td>0</td>
<td>7.5</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>7532</td>
<td>7.5</td>
<td>14.5</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>4225</td>
<td>14.9167</td>
<td>15.4167</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5867</td>
<td>15.5833</td>
<td>24</td>
<td>4</td>
</tr>
</tbody>
</table>

0: Home 3: Visit 6: Serve Passenger
1: Work 4: Social/Rec 7: School
2: Shop 5: Other 8: College
Finding Core Subgroups

One or more subgroups may be highly active as spreaders in the disease to the population as a whole. These subgroups are called core groups.

To determine which groups are core groups, we first calculate an R_0 value for each demographic subgroup.

$R_0 \equiv$ the expected number of secondary cases produced in a completely susceptible population, by a typical infected individual during its entire period of infectiousness.

If $R_0 > 1$ the disease will spread, if $R_0 < 1$, the disease will die out.
Calculation of R_0 for demographic subgroups

In general,

$$R_0 = r\beta\tau$$

where

$r = $ Number of contacts per person

$\beta = $ Probability of transmission

$\tau = $ Mean duration of the infectious period

Define

$R_{0ij} \equiv$ the basic reproduction number for the group i contacts of an infected in group j

$R_{0j} \equiv$ the basic reproduction number for all the contacts of a group j infected
A subgroup i is in the core for the spread of the disease if both

$$R_0 > 1 \text{ (the disease persists), and}$$

$$R_{0i} > 1$$

R_0 for the overall disease will be the largest eigenvalue from the matrix of R_{0ij} values.
Calculating R_0 values for Individuals from a 1% sample

For each interaction between individuals, we calculated an R_{0ij} value.

$$R_{0ij} \equiv \frac{r_{ij} \beta_{ij}}{\gamma}$$

where

$r_{ij} = \text{Fraction of Person } i\text{'s contacts that are with Person } j$

$\beta_{ij} = \text{Probability of transmission between an infected } j \text{ and susceptible } i$

$1/\gamma = \text{Mean duration of the infectious period}$
Calculating R_0 values for Individuals

Cont’d

Using TRANSIMS data, we let

$$\beta_{ij} = \frac{\text{length of contact}_{(i,j)}}{24}$$ \hspace{1cm} \text{(fraction of the day spent together)}

$$r_{ij} = \frac{\text{length of contact}_{(i,j)}}{\sum_i \text{length of contact}_{(i,j)}}$$ \hspace{1cm} \text{(fraction of i's contacts that are with j)}

We then calculated the R_{0j} values for each individual:

$$R_{0j} = \sum_i \frac{r_{ji} \beta_{ij}}{\gamma}$$
For the 1% sample: $\gamma = .5 \Rightarrow R_0 = 2$

Age Distribution for Individual $R_0 > 1$ values

R_0 1.0-1.2

R_0 1.8-2.0
Distribution of Population vs. $R_{0j} > 1$ subset

Age Distributions

Number of Contact Distributions
Distribution of Population vs. $R_{0j} > 1$ subset

Length of Activity Log Distribution
Conclusions and Future Work

- Calculated R_0 values for a population and for each individual in the population under different parameter scenarios.

- Beginning to identify which types of individuals might be classified as "super-spreaders" by determining which types of individuals belong to the core group for different disease parameters.

- Begin calculating R_0 values for demographic subgroups.

- Identify subgroups that contribute to the disease spread.

- Single the core groups out for vaccination to see how infection changes in the population as a whole.