Design of HD2: a 15 T Nb3Sn dipole with a 35 mm bore

PDF Version Also Available for Download.

Description

The Nb{sub 3}Sn dipole HD1, recently fabricated and tested at LBNL, pushes the limits of accelerator magnet technology into the 16 T field range, and opens the way to a new generation of HEP colliders. HD1 is based on a flat racetrack coil configuration and has a 10 mm bore. These features are consistent with the HD1 goals: exploring the Nb{sub 3}Sn conductor performance limits at the maximum fields and under high stress. However, in order to further develop the block-coil geometry for future high-field accelerators, the bore size has to be increased to 30-50 mm. With respect to HD1, ... continued below

Creation Information

Sabbi, G.; Bartlett, S. E.; Caspi, S.; Dietderich, D. R.; Ferracin, P.; Gourlay, S. A. et al. June 1, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Nb{sub 3}Sn dipole HD1, recently fabricated and tested at LBNL, pushes the limits of accelerator magnet technology into the 16 T field range, and opens the way to a new generation of HEP colliders. HD1 is based on a flat racetrack coil configuration and has a 10 mm bore. These features are consistent with the HD1 goals: exploring the Nb{sub 3}Sn conductor performance limits at the maximum fields and under high stress. However, in order to further develop the block-coil geometry for future high-field accelerators, the bore size has to be increased to 30-50 mm. With respect to HD1, the main R&D challenges are: (a) design of the coil ends, to allow a magnetically efficient cross-section without obstructing the beam path; (b) design of the bore, to support the coil against the pre-load force; (c) correction of the geometric field errors. HD2 represents a first step in addressing these issues, with a central dipole field above 15 T, a 35 mm bore, and nominal field harmonics within a fraction of one unit. This paper describes the HD2 magnet design concept and its main features, as well as further steps required to develop a cost-effective block-coil design for future high-field, accelerator-quality dipoles.

Subjects

Source

  • Journal Name: IEEE Transactions on Applied Superconductivity; Journal Volume: 15; Journal Issue: 2

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-1579E
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1109/TASC.2005.849510 | External Link
  • Office of Scientific & Technical Information Report Number: 949206
  • Archival Resource Key: ark:/67531/metadc934133

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2005

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Jan. 4, 2017, 3:04 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sabbi, G.; Bartlett, S. E.; Caspi, S.; Dietderich, D. R.; Ferracin, P.; Gourlay, S. A. et al. Design of HD2: a 15 T Nb3Sn dipole with a 35 mm bore, article, June 1, 2005; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc934133/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.