A Preliminary Investigation of Rapid Depressurization Phenomena Following a Sudden DLOFC in a VHTR

PDF Version Also Available for Download.

Description

Air ingress has been identified as a potential threat for Very High Temperature gas-cooled Reactors (VHTR). Reactor components constructed of graphite will, at high temperatures, produce exothermic reactions in the presence of oxygen. The danger lies in the possibility of fuel element damage and core structural failure. Previous investigations of air ingress mechanisms have focused on thermal and molecular diffusion, density-driven stratified flow, and natural convection. Here, we investigate the possibility of a rapid ingress of air due to a Taylor wave expansion after a hypothetical sudden loss of coolant accident (LOCA) scenario in a VHTR. Our analysis starts with ... continued below

Creation Information

Martineau, Richard C.; Berry, Ray A. & Knoll, Dana A. March 1, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Air ingress has been identified as a potential threat for Very High Temperature gas-cooled Reactors (VHTR). Reactor components constructed of graphite will, at high temperatures, produce exothermic reactions in the presence of oxygen. The danger lies in the possibility of fuel element damage and core structural failure. Previous investigations of air ingress mechanisms have focused on thermal and molecular diffusion, density-driven stratified flow, and natural convection. Here, we investigate the possibility of a rapid ingress of air due to a Taylor wave expansion after a hypothetical sudden loss of coolant accident (LOCA) scenario in a VHTR. Our analysis starts with a one-dimensional shock tube simulation to simply illustrate the development of a Taylor wave with resulting reentrant flow. Then, a simulation is performed of an idealized two-dimensional axisymmetric representation of the lower plenum of General Atomics GT-MHR subjected to a hypothetical catastrophic break of the hot duct. Analysis shows the potential for significant and rapid air ingress into the reactor vessel in the case of a large break in the cooling system.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: INL/EXT-09-15634
  • Grant Number: DE-AC07-99ID-13727
  • DOI: 10.2172/957535 | External Link
  • Office of Scientific & Technical Information Report Number: 957535
  • Archival Resource Key: ark:/67531/metadc934058

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Jan. 4, 2017, 2:26 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 15

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Martineau, Richard C.; Berry, Ray A. & Knoll, Dana A. A Preliminary Investigation of Rapid Depressurization Phenomena Following a Sudden DLOFC in a VHTR, report, March 1, 2009; [Idaho]. (digital.library.unt.edu/ark:/67531/metadc934058/: accessed August 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.