Distributed sensor networks with collective computation

PDF Version Also Available for Download.

Description

Simulations of a network of N sensors have been performed. The simulation space contains a number of sound sources and a large number of sensors. Each sensor is equipped with an omni-directional microphone and is capable of measuring only the time of arrival of a signal. Sensors are able to wirelessly transmit and receive packets of information, and have some computing power. The sensors were programmed to merge all information (received packets as well as local measurements) into a 'world view' for that node. This world view is then transmitted. In this way, information can slowly diffuse across the network. ... continued below

Physical Description

7 p.

Creation Information

Lanman, D. R. (Douglas R.) January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Simulations of a network of N sensors have been performed. The simulation space contains a number of sound sources and a large number of sensors. Each sensor is equipped with an omni-directional microphone and is capable of measuring only the time of arrival of a signal. Sensors are able to wirelessly transmit and receive packets of information, and have some computing power. The sensors were programmed to merge all information (received packets as well as local measurements) into a 'world view' for that node. This world view is then transmitted. In this way, information can slowly diffuse across the network. One node was monitored in the network as a proxy for when information had diffused across the network. Simulations demonstrated that the energy expended per sensor per time step was approximately independent of N.

Physical Description

7 p.

Source

  • "Submitted to: Symposium 2001: Highlighting Student and Postdoctoral Research, Santa Fe, NM, August 6, 2001"

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-4388
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 975679
  • Archival Resource Key: ark:/67531/metadc934044

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 3:48 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lanman, D. R. (Douglas R.). Distributed sensor networks with collective computation, article, January 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc934044/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.