Use of Narrow-Diameter, Direct-Push Wells to Characterize and Remediate Carbon Tetrachloride in the 200 West Area, Hanford Site, Washington

Prepared for the U.S. Department of Energy
Assistant Secretary for Environmental Management
Contractor for the U.S. Department of Energy
under Contract DE-AC06-08RL14788

CH2M HILL
Plateau Remediation Company
P.O. Box 1600
Richland, Washington 99352

Approved for Public Release.
Further Dissemination Unlimited
Use of Narrow-Diameter, Direct-Push Wells to Characterize and Remediate Carbon Tetrachloride in the 200 West Area, Hanford Site, Washington

V. Rohay
CH2M HILL Plateau Remediation Company

Date Published
April 2009

To Be Presented at
7th Washington Hydrogeology Symposium
Tacoma, WA
April 28-30, 2009

Prepared for the U.S. Department of Energy
Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy
under Contract DE-AC06-08RL14788

CH2M HILL
Plateau Remediation Company
P.O. Box 1600
Richland, Washington

Approved for Public Release
Further Dissemination Unlimited
Copyright License
By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government’s right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper.

Release Approval Date
LEGAL DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced from the best available copy. Available in paper copy.

Printed in the United States of America
The Hydraulic Hammer Rig (HHR) direct-push technology (Fig. 1) has been successfully used to characterize carbon tetrachloride in the vadose zone at the 216-2-9 Trench (Figs. 2 and 3). Three of the HHR holes were completed as ½-in. ID SVE wells (Fig. 3).

Compared to traditional drilled wells, the HHR wells have several advantages (Table 1). The main HHR limitations are penetration depth (~120 ft to Cold Creek Unit) and the need to pre-select soil sample depths based on adjacent wells or geophysical logs.

Table 1: SVE Well Comparison

<table>
<thead>
<tr>
<th>Installation Method</th>
<th>HHR</th>
<th>Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>~2 days</td>
<td>Weeks or more</td>
</tr>
<tr>
<td>Well diameter</td>
<td>½-in.</td>
<td>2- to 8-in. typical</td>
</tr>
<tr>
<td>Cutting/DW</td>
<td>Minimal</td>
<td>Significant</td>
</tr>
<tr>
<td>SVE radius of influence</td>
<td>30 ft</td>
<td>120 ft</td>
</tr>
<tr>
<td>Cost</td>
<td><$10,000</td>
<td>$200,000 or more</td>
</tr>
<tr>
<td>Depth limits</td>
<td>~120 ft (to Cold Creek Unit)</td>
<td>Your DDOs or project budget!</td>
</tr>
</tbody>
</table>

In 2008, a vacuum test of these narrow diameter wells (Fig. 8) indicated that they have a radius of influence of about 30 ft.

Based on their favorable performance and radius of influence, HHR SVE wells have potential for future use in both monitoring and targeted SVE to achieve VOC cleanup goals at the carbon tetrachloride waste sites.