CZT Virtual Frisch-grid Detector: Principles and Applications

PDF Version Also Available for Download.

Description

Cadmium Zinc Telluride (CdZnTe or CZT) is a very attractive material for using as room-temperature semiconductor detectors, because it has a wide bandgap and a high atomic number. However, due to the material's poor hole mobility, several special techniques were developed to ensure its suitability for radiation detection. Among them, the virtual Frisch-grid CZT detector is an attractive option, having a simple configuration, yet delivering an outstanding spectral performance. The goal of our group in Brookhaven National Laboratory (BNL) is to improve the performance of Frisch-ring CZT detectors; most recently, that effort focused on the non-contacting Frisch-ring detector, allowing us ... continued below

Creation Information

Cui,Y.; Bolotnikov, A.; Camarda, G.; Hossain, A. & James, R. B. March 24, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 28 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Cadmium Zinc Telluride (CdZnTe or CZT) is a very attractive material for using as room-temperature semiconductor detectors, because it has a wide bandgap and a high atomic number. However, due to the material's poor hole mobility, several special techniques were developed to ensure its suitability for radiation detection. Among them, the virtual Frisch-grid CZT detector is an attractive option, having a simple configuration, yet delivering an outstanding spectral performance. The goal of our group in Brookhaven National Laboratory (BNL) is to improve the performance of Frisch-ring CZT detectors; most recently, that effort focused on the non-contacting Frisch-ring detector, allowing us to build an inexpensive, large-volume detector array with high energy-resolution and a large effective area. In this paper, the principles of virtual Frisch-grid detectors are described, especially BNL's innovative improvements. The potential applications of virtual Frisch-grid detectors are discussed, and as an example, a hand-held gamma-ray spectrometer using a CZT virtual Frischgrid detector array is introduced, which is a self-contained device with a radiation detector, readout circuit, communication circuit, and high-voltage supply. It has good energy resolution of 1.4% (FWHM of 662-keV peak) with a total detection volume of {approx}20 cm{sup 3}. Such a portable inexpensive device can be used widely in nonproliferation applications, non-destructive detection, radiation imaging, and for homeland security. Extended systems based on the same technology have potential applications in industrial- and nuclear-medical-imaging.

Source

  • LISAT 2009 Fifth Annual IEEE Long Island Systems, Applications and Technology Conference; Farmingdales, New York; 20090501 through 20090501

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--82046-2009-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 950450
  • Archival Resource Key: ark:/67531/metadc933838

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 24, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Sept. 25, 2017, 3:16 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 28

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Cui,Y.; Bolotnikov, A.; Camarda, G.; Hossain, A. & James, R. B. CZT Virtual Frisch-grid Detector: Principles and Applications, article, March 24, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc933838/: accessed December 11, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.