Assembly and Characterization of a Prototype Laser-Optical Firing System

PDF Version Also Available for Download.

Description

The design, assembly and characterization of the latest generation of a small, ruggedized laser-optical firing system will be discussed. This work builds upon earlier results in an effort to continue the development of robust fiber-coupled laseroptical firing systems.[1][2] This newest prototype strives to improve on earlier designs, while continuing to utilize many of the environmentally proven opto-mechanical sub-assemblies.[2][3] One area of improvement involves the implementation of a second optical safing and arming component. Several additional design improvements were also incorporated to address shortcomings uncovered during environmental testing.[4][5] These tests and the subsequent failure analysis were performed at the laser sub-system ... continued below

Creation Information

Morelli, Gregg L August 3, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Kansas City Plant (U.S.)
    Publisher Info: Kansas City Plant (KCP), Kansas City, MO (United States)
    Place of Publication: Kansas City, Missouri

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The design, assembly and characterization of the latest generation of a small, ruggedized laser-optical firing system will be discussed. This work builds upon earlier results in an effort to continue the development of robust fiber-coupled laseroptical firing systems.[1][2] This newest prototype strives to improve on earlier designs, while continuing to utilize many of the environmentally proven opto-mechanical sub-assemblies.[2][3] One area of improvement involves the implementation of a second optical safing and arming component. Several additional design improvements were also incorporated to address shortcomings uncovered during environmental testing.[4][5] These tests and the subsequent failure analysis were performed at the laser sub-system level. Four identical prototypes were assembled and characterized. The performance of the units were evaluated by comparing a number of parameters including laser output energy, slope efficiency, beam divergence, spatial intensity profile, fiber injection and splitter-coupler transmission efficiency. Other factors evaluated were the ease of alignment, repeatability of the alignment process and the fabrication of the fiberoptical cables. The experimentally obtained results will be compared and contrasted to the performance of earlier prototypes.

Source

  • Optical Technologies for Arming, Safing, Fuzing and Firing V, SPIE's Symposium-Optics & Photonics, 8/3/09, San Diego, CA

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: KCP-613-8610
  • Grant Number: DE-AC04-01AL66850
  • Office of Scientific & Technical Information Report Number: 961741
  • Archival Resource Key: ark:/67531/metadc933774

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 3, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • April 27, 2018, 1:32 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Morelli, Gregg L. Assembly and Characterization of a Prototype Laser-Optical Firing System, article, August 3, 2009; Kansas City, Missouri. (digital.library.unt.edu/ark:/67531/metadc933774/: accessed November 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.