Rare Earth Phosphate Glass and Glass-Ceramic Proton Conductors

PDF Version Also Available for Download.

Description

The structure and conductivity of cerium and lanthanum phosphate glasses and glass-ceramics were investigated. The effects of varying the metal to phosphate ratio in the glasses, doping LaP3O9 glasses with Ce, and recrystallization of CeP3O9 glasses, on the glasses' microstructure and total conductivity were investigated using XRD, SEM, and AC impedance techniques. Strong increases in conductivity occurred when the glasses were recrystallized: the conductivity of a cerium metaphosphate glass increased conductivity after recrystallization from 10-7.5 S/cm to 10-6 S/cm at 400oC.

Physical Description

5

Creation Information

De Jonghe, Lutgard C.; Ray, Hannah L. & Wang, Ruigang December 3, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The structure and conductivity of cerium and lanthanum phosphate glasses and glass-ceramics were investigated. The effects of varying the metal to phosphate ratio in the glasses, doping LaP3O9 glasses with Ce, and recrystallization of CeP3O9 glasses, on the glasses' microstructure and total conductivity were investigated using XRD, SEM, and AC impedance techniques. Strong increases in conductivity occurred when the glasses were recrystallized: the conductivity of a cerium metaphosphate glass increased conductivity after recrystallization from 10-7.5 S/cm to 10-6 S/cm at 400oC.

Physical Description

5

Source

  • Pacific Rim Meeting on Electrochemical and Solid State Science.., Honolulu, Hawaii , October 12-17, 2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-2801E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 975365
  • Archival Resource Key: ark:/67531/metadc933715

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 3, 2008

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Oct. 2, 2017, 5:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

De Jonghe, Lutgard C.; Ray, Hannah L. & Wang, Ruigang. Rare Earth Phosphate Glass and Glass-Ceramic Proton Conductors, article, December 3, 2008; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc933715/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.