Development of a Novel Catalyst for No Decomposition

PDF Version Also Available for Download.

Description

Air pollution arising from the emission of nitrogen oxides as a result of combustion taking place in boilers, furnaces and engines, has increasingly been recognized as a problem. New methods to remove NO{sub x} emissions significantly and economically must be developed. The current technology for post-combustion removal of NO is the selective catalytic reduction (SCR) of NO by ammonia or possibly by a hydrocarbon such as methane. The catalytic decomposition of NO to give N{sub 2} will be preferable to the SCR process because it will eliminate the costs and operating problems associated with the use of an external reducing ... continued below

Creation Information

Akyurtlu, Ates & Akyurtlu, Jale June 22, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Air pollution arising from the emission of nitrogen oxides as a result of combustion taking place in boilers, furnaces and engines, has increasingly been recognized as a problem. New methods to remove NO{sub x} emissions significantly and economically must be developed. The current technology for post-combustion removal of NO is the selective catalytic reduction (SCR) of NO by ammonia or possibly by a hydrocarbon such as methane. The catalytic decomposition of NO to give N{sub 2} will be preferable to the SCR process because it will eliminate the costs and operating problems associated with the use of an external reducing species. The most promising decomposition catalysts are transition metal (especially copper)-exchanged zeolites, perovskites, and noble metals supported on metal oxides such as alumina, silica, and ceria. The main shortcoming of the noble metal reducible oxide (NMRO) catalysts is that they are prone to deactivation by oxygen. It has been reported that catalysts containing tin oxide show oxygen adsorption behavior that may involve hydroxyl groups attached to the tin oxide. This is different than that observed with other noble metal-metal oxide combinations, which have the oxygen adsorbing on the noble metal and subsequently spilling over to the metal oxide. This observation leads one to believe that the Pt/SnO{sub 2} catalysts may have a potential as NO decomposition catalysts in the presence of oxygen. This prediction is also supported by some preliminary data obtained for NO decomposition on a Pt/SnO{sub 2} catalyst in the PI's laboratory. The main objective of the research that is being undertaken is the evaluation of the Pt/SnO{sub 2} catalysts for the decomposition of NO in simulated power plant stack gases with particular attention to the resistance to deactivation by O{sub 2}, H{sub 2}O, and elevated temperatures. Temperature programmed desorption (TPD) and temperature programmed reaction (TPRx) studies on Pt/SnO{sub 2} catalysts having different noble metal concentrations and pretreated under different conditions were done. It is also planned to perform NO decomposition tests in a laboratory-size packed-bed reactor to obtain long-term deactivation data. Temperature programmed desorption and temperature controlled reaction runs were made with catalysts containing 15% Pt and 10% Pt on SnO{sub 2}. Catalysts containing 10% Pt resulted in significantly lower activities than 15% PT catalysts. Therefore, in the remainder of the tests 15% Pt/SnO{sub 2} catalysts were used. Isothermal reaction studies were made to elucidate the effects of temperature, oxygen, water vapor, pretreatment temperature, and space velocity on NO dissociation. It was found that the presence of oxygen and water vapor did not affect the activation energy of the NO dissociation reaction indicating the presence of the same rate controlling step for all feed compositions. Activation energy was higher for higher gas velocities suggesting the presence of mass transfer limitations at lower velocities. Presence of oxygen in the feed inhibited the NO decomposition. Having water vapor in the feed did not significantly affect the catalyst activity for catalysts pretreated at 373 K, but significantly reduced catalyst activity for catalysts pretreated at 900 K. Long-term deactivation studies indicated that the catalyst deactivated slowly both with and without the presence of added oxygen in the feed, Deactivation started later in the presence of oxygen. The activities of the catalysts investigated were too low below 1000 K for commercial applications. Their selectivity towards N{sub 2} was good at temperatures above 700 K. A different method for catalyst preparation is needed to improve the catalyst performance.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FG26-03NT41911
  • DOI: 10.2172/969139 | External Link
  • Office of Scientific & Technical Information Report Number: 969139
  • Archival Resource Key: ark:/67531/metadc933695

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 22, 2007

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 5, 2016, 2:05 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Akyurtlu, Ates & Akyurtlu, Jale. Development of a Novel Catalyst for No Decomposition, report, June 22, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc933695/: accessed September 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.