Device-scale perpendicular alignment of colloidal nanorods

PDF Version Also Available for Download.

Description

The self-assembly of nanocrystals enables new classes of materials whose properties are controlled by the periodicities of the assembly, as well as by the size, shape and composition of the nanocrystals. While self-assembly of spherical nanoparticles has advanced significantly in the last decade, assembly of rod-shaped nanocrystals has seen limited progress due to the requirement of orientational order. Here, the parameters critically relevant to self-assembly are systematically quantified using a combination of diffraction and theoretical modeling; these highlight the importance of kinetics on orientational order. Through drying-mediated self-assembly we achieve unprecedented control over orientational order (up to 96percent vertically oriented ... continued below

Creation Information

Baker, Jessica L.; Widmer-Cooper, Asaph; Toney, Michael F.; Geissler, Phillip P. & Alivisatos, A. Paul September 25, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The self-assembly of nanocrystals enables new classes of materials whose properties are controlled by the periodicities of the assembly, as well as by the size, shape and composition of the nanocrystals. While self-assembly of spherical nanoparticles has advanced significantly in the last decade, assembly of rod-shaped nanocrystals has seen limited progress due to the requirement of orientational order. Here, the parameters critically relevant to self-assembly are systematically quantified using a combination of diffraction and theoretical modeling; these highlight the importance of kinetics on orientational order. Through drying-mediated self-assembly we achieve unprecedented control over orientational order (up to 96percent vertically oriented rods on 1cm2 areas) on a wide range of substrates (ITO, PEDOT:PSS, Si3N4). This opens new avenues for nanocrystal-based devices competitive with thin film devices, as problems of granularity can be tackled through crystallographic orientational control over macroscopic areas.

Source

  • Journal Name: Nano Letters

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-2707E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 974259
  • Archival Resource Key: ark:/67531/metadc933641

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 25, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Oct. 2, 2017, 12:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Baker, Jessica L.; Widmer-Cooper, Asaph; Toney, Michael F.; Geissler, Phillip P. & Alivisatos, A. Paul. Device-scale perpendicular alignment of colloidal nanorods, article, September 25, 2009; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc933641/: accessed April 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.