Polymeric-Metallic Composite Membranes for High Temperature Applications

Jennifer S. Young, Ph.D.
Materials Science and Technology Division
Polymers and Coatings Group
Los Alamos National Laboratory

AIChE National Meeting
Reno, Nevada
November 9, 2001
Collaborators

- **Los Alamos National Laboratory**
 Betty Jorgensen, Brent Espinoza, Marc Weimer, Gordon Jarvinen

- **Pall Corporation**
 Bill Palmer, Scott Hopkins, Sean Meenan, Jim Acquaviva, Steve Geibel, Dan Henkel

- **University of Colorado**
 Alan Greenberg, Vivek Khare

- **Idaho National Engineering and Environmental Laboratory**
 Eric Peterson, Chris Orme, Alan Wertsching
Project Objective

- Develop a polymeric based membrane that can withstand greater temperatures and pressures than current materials
Project Approach

- Begin with polybenzimidazole (PBI) from Celanese
 - Thermally stable (Tg of 450°C)
 - Chemically resistant
 - Processable, derivatizable, blendable
- Use porous metal supports to provide support for polymer
Challenges

- Differences in thermal expansion
 - PBI \(60 \times 10^{-6}\)
 - Porous metal support \(6.36 \times 10^{-6}\)
- Forming thin films
- Sealing
- High temperature experimentation
Thin Film Formation

- Koros’ Group
 - >200,000 MW of a rigid polymer
 - on alumina membranes (0.02µm pores)
 - Thin films to <1 µm thick

- This Work
 - PBI is 20,000 MW
 - Support is stainless steel porous metal membrane (0.2µm pores)

Membrane Formation

- Prepared a solution of 10 wt.% PBI in dimethylacetamide by heating to 150 °C and stirring until PBI goes into solution
- 40 µl of solution are placed on the membrane (0.78 cm in diameter)
- Dried briefly at room temperature, heated to 50 °C for an hour
- Heat cycled between 50 °C and 300 °C five times (90 minute cycle)
Composite Membrane
Composite Membrane
Composite Membrane
Gas Permeation Test Rig
Permeability, barrers

\[P = \frac{10^{10} \ast \nu \ast L}{A \ast \Delta p} \]
Permeability vs. Inverse Temperature

Permeability, barrer

1000/T, K^{-1}

H2
CO2
CH4
N2

350 °C
17 °C
H$_2$/N$_2$ Permeation Data

He/N2 Permeation using Polyimides

![Graph showing permeability ratio P_{He}/P_{N2} vs. permeability in barrer for different polyimide samples. The graph includes data points and a trend line for Robeson He/N2.]
H₂/CH₄ Permeation Data

CO₂/CH₄ Permeation Data

H$_2$/CO$_2$ Permeation Data

Linear Variable Differential Transformer (LVDT) Device

- LVDT
- PT-1
- PT-2
- Feed gas
- Permeate collection bottle
- Retentate to vent
- Solenoid valve
- Constant temperature oven
- To vent
- PC
- To vent
LVDT Data - Compaction

![Graph showing compaction and upstream pressure over time.](image-url)
LVDT Data - Permeability

![Graph showing permeability data with time (hours) on the x-axis and upstream pressure (psi) on the y-axis. The graph displays a trend of permeability over time with markers indicating specific values of permeability (P/l) in 10^{-6} cm3/cm2 s cmHg].
Progress To Date and Future Work

To Date
- Fabricated thick intact composite PBI/porous metal membranes
- Built test rigs and automated data collection
- Tested membranes to temperatures of 350 °C with H₂, and N₂
- Demonstrated working principle of LVDT

Future Work
- Test permselectivity to temperatures of 350 °C with CO₂ and CH₄
- Determine effects of pressure on permselectivity
- Perform mixed gas tests
- Test modified polymers and polymer blends
- Increase temperature range of LVDT
Acknowledgements

- Funded by DOE Fossil Energy, administered by the National Energy and Technology Lab, Morgantown