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Abstract

The TrilinosTM
Project is an effort to facilitate the design, development, in-

tegration and ongoing support of mathematical software libraries. AztecOOTM

is a package within Trilinos that enables the use of the Aztec solver library [19]
with EpetraTM

[13] objects. AztecOO provides access to Aztec preconditioners
and solvers by implementing the Aztec “matrix-free” interface using Epetra.
While Aztec is written in C and procedure-oriented, AztecOO is written in C++
and is object-oriented.

In addition to providing access to Aztec capabilities, AztecOO also provides
some signficant new functionality. In particular it provides an extensible status
testing capability that allows expression of sophisticated stopping criteria as is
needed in production use of iterative solvers. AztecOO also provides mecha-
nisms for using Ifpack [2], ML [20] and AztecOO itself as preconditioners.
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1 Introduction
AztecOO is a collection of C++ classes that support the construction and use of
objects for solving linear systems of equations of the form

Ax = b (1)

via preconditioned Krylov methods, as provided in Aztec.

This user guide is intended to introduce a new user to the basic features of AztecOO.
This document is not intended as a reference manual. Detailed descriptions of
AztecOO classes and methods can be found online at the Trilinos Project home
page [12].

1.1 Overview of Major AztecOO Classes and
Features

AztecOO contains a variety of classes to support the solution of linear systems
of equations of the form Ax = b using preconditioned iterative methods. AztecOO
also fully contains Aztec, so any application that is using Aztec can use the AztecOO
library in place of Aztec.

The primary AztecOO class is of the same name, AztecOO. An AztecOO class
instance acts as a manager of Aztec, accepting user data as Epetra objects. If
an AztecOO object is instantiated using Epetra objects, all of Aztec’s precondition-
ers and Krylov methods can be applied to the Epetra-defined problem. However,
AztecOO provides a variety of mechanisms to override default Aztec capabilities.
Users can construct and use preconditioners from Ifpack or ML, or can use an-
other instance of the AztecOO class as a preconditioner. Users can also override
the default convergence tests in Aztec and use any combination of available status
tests in AztecOO StatusTest classes, or define their own.

1.2 A Special Note for Aztec Users

AztecOO completely contains the full functionality and interface of Aztec 2.1 [19].
Therefore, any code that calls Aztec 2.1 functions can use AztecOO include files
and library in place of Aztec 2.1. Any file that includes Aztec header files must
be recompiled and the executable file must be re-linked with the AztecOO library,
and the Aztec library must not be linked. In addition, the Epetra [1], LAPACK [3] and
BLAS [14, 7, 6] libraries must also be available to the linker. If --enable-aztecoo-azlu
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is provided to the configure command, the Y12M [22] library must also be
provided. Finally, it is likely that you will need the linker to be aware of C++ libraries.
Often the C++ compiler itself is the best program to use for linking, since it is aware
of what system libraries are needed for linking.

Trilinos (and AztecOO as part of Trilinos) use a much different build process that
Aztec 2.1. Trilinos uses Autoconf [8] and Automake [9] to support a configure/make
process. If you are familar with configure/make procedures, you should find Trili-
nos fairly easy install. A Trilinos Installation Guide is available from the Trilinos
website [12]. If you are familiar with the ad hoc build process of Aztec 2.1 and are
unfamiliar with configure/make, you may find building Trilinos and AztecOO chal-
lenging. We encourage you to carefully read the Trilinos Installation Guide, since
it will help you with understanding configure/make procedures in general, and the
use of the processes in Trilinos specifically.

Unlike Aztec, AztecOO does not provide its own copies of BLAS, LAPACK or Y12M
libraries. This change is part of a general policy in Trilinos to provide interfaces
to third-party libraries but not code. This change is generally considered good
practice from a software engineering perspective for a number of reasons, but can
be a hindrance to Aztec users making a transition to AztectOO. Optimized BLAS
libraries are available for most computer systems. We recommend you obtain one
of these libraries from the Internet, if it is not already installed on your computer
system. LAPACK is also available in an optimized form for some systems, but this
is less critical. LAPACK can also be obtained from the Internet, or may already
be installed on your system. Y12M is an old sparse direct solver also available
from the Internet. It is used by Aztec’s domain decomposition preconditioners as
a local subdomain solver. Most Aztec users do not require it. By default, it is
not required for building the AztecOO library. You may enable it by passing the
argument --enable-aztecoo-azlu to the configure command.

1.3 Use of Epetra

AztecOO relies on Epetra for both concrete and abstract classes that describe
matrix, vector and linear operator objects. Although concrete classes are needed
to construct matrices, AztecOO itself uses these matrices via two Epetra abstract
classes. By using abstract interfaces, we can support any of the predefined classes
that implement the abstract interfaces and allow users to define new implementa-
tions. This allows AztecOO to be easily extended.

Epetra Abstract Classes

The two primary abstract Epetra classes used by AztecOO are:
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1. Epetra RowMatrix: Supports the use of any class that is conceptually a lin-
ear operator with access to coefficient data. Although row-orientation is as-
sumed, this class works equally well with column oriented data, since trans-
pose operations are supported. This class provides an interface to access
matrix data. In addition, it extends the Epetra Operator interface, so any
class that implements Epetra RowMatrix also implmenents Epetra Operator,
described next. There are four primary classes in Epetra that implement Epe-
tra RowMatrix, namely the Epetra CrsMatrix, Epetra VbrMatrix, Epetra FECrsMatrix
and Epetra FEVbrMatrix classes. AztecOO also provides an implementation
of Epetra CrsMatrix called Epetra MsrMatrix. Epetra MsrMatrix allows users
whose application is already forming Aztec DMSR matrix structs to encap-
sulate the DMSR matrix in a class that implements Epetra RowMatrix. The
encapsulation does not copy the data in the DMSR matrix struct. This feature
is important for people making a transition from Aztec to AztecOO.

2. Epetra Operator: Supports the use of any class that is conceptually a lin-
ear operator. There are only a handful of methods in this class, the most
important of which are the Apply() and ApplyInverse() (ApplyInverse() can be
defined as nonexistent). A large number of Epetra classes implement the
Epetra Operator interface, including the Epetra CrsMatrix, Epetra VbrMatrix,
Epetra FECrsMatrix and Epetra FEVbrMatrix since these classes implement
Epetra RowMatrix and Epetra RowMatrix extends Epetra Operator. In addi-
tion, ML and IFPACK both implement the Epetra Operator interface, so they
can be used as preconditioners for AztecOO. A class called AztecOO Operator
also implements the Epetra Operator interface using an existing AztecOO
class instance. This allows AztecOO to be used as a preconditioner for itself.

Epetra Concrete Classes

Given the above abstract classes, we need some concrete classes in order to
construct explicit objects. Specifically, the following concrete Epetra classes are
used:

1. Epetra Vector: Supports construction and use of distributed vectors of
double-precision numbers. Once constructed, Epetra Vector objects can be
used in multiple ways. Common operations such as norms, dot products and
vector updates are supported by methods in this class. Additional functional-
ity is available via several extension techniques discussed later.

2. Epetra MultiVector: An Epetra MultiVector object is a collection of Epe-
tra Vector objects (although Epetra Vector is actually implemented as a spe-
cialization of Epetra MultiVector). Specifically, an Epetra MultiVector object
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is a collection of vectors with the same size and distribution. This kind of
object is useful for block algorithms and applications that manage multiple
vectors simultaneously. Epetra Vector and Epetra MultiVector objects are un-
derstood by all Trilinos packages.

3. Epetra CrsGraph: Supports the construction and use of adjacency graphs.
These graphs are used to describe the pattern of Epetra sparse matrix classes
and provide pattern-based information to load-balancing interfaces. The graphs
are also used to implement overlapping subdomain algorithms and a variety
of other parallel algorithms.

4. Epetra CrsMatrix: Supports construction and use of distributed sparse ma-
trix objects. Once constructed, an Epetra CrsMatrix object can be used with
any Trilinos solvers or preconditioners. This class also supports common ma-
trix and matrix-vector operations such as matrix scaling, matrix norms and
matrix-vector multiplication.

5. Epetra FECrsMatrix: This class inherits from Epetra CrsMatrix, providing
an interface to construct the matrix from element stiffness matrices. Once
constructed, this matrix can be used as an Epetra CrsMatrix.

6. Epetra VbrMatrix: Although less frequently used than the Epetra CrsMatrix
class, this class supports the construction of sparse matrices whose entries
are dense matrices. This type of matrix is frequently found in applications
where multiple degrees of freedom are tracked at each mesh point. When
properly used, the Epetra VbrMatrix class can offer substantial machine per-
formance and algorithmic robustness improvements.

7. Epetra FEVbrMatrix: This class inherits from Epetra VbrMatrix, providing
an interface to construct the block matrix from element stiffness matrices.
Once constructed, this matrix can be used as an Epetra VbrMatrix.

8. Epetra MsrMatrix: Although not part of Epetra, we list this class here be-
cause it is a viable option for existing Aztec users. An Epetra MsrMatrix
object is constructed by passing in an existing AZ MATRIX struct defining
a DMSR matrix as described in the Aztec 2.1 User’s Guide [19]. Given the
matrix data in this form, the Epetra MsrMatrix class implements the Epe-
tra RowMatrix interface using the DMSR matrix with little extra storage re-
quired. This class is useful if an existing Aztec user has already constructed
a DMSR matrix.

9. Epetra LinearProblem: An Epetra LinearProblem object is an aggregate
object that encapsulates the problem Ax = b. It contains a pointer to an Epe-
tra RowMatrix or Epetra Operator representing A, and an Epetra MultiVector

8



2 A First Example AztecOOTM Users Guide

for x and another for b. (NOTE: Although the interface supports multiple right-
hand-sides and solution vectors, AztecOO presently supports the solution of
only one right-hand-side.) Although use of the Epetra LinearProblem is not
required for passing A, x and b to AztecOO, it is highly recommended. Use
of Epetra LinearProblem guarantees that the matrix, left-hand-side and right-
hand-side are compatible. Also, the Epetra LinearProblem class provides
methods for scaling the linear problem using any of a variety of diagonal
scaling methods.

2 A First Example

Before proceeding with additional descriptive information, we introduce a simple
example in this section in order to explicitly illustrate a straight-forward use of
AztecOO. This specific example constructs a tridiagonal matrix and a random RHS
vector. Then it constructs an AztecOO object, sets a few parameters for the solver
and then solves the problem.

The example code is listed in Figure 1. In the remainder of this section we proceed
with a description of the code.

2.1 Explanation of Figure 1

Line 1

Include the AztecOO config.h file. This file contains macros definitions that were
defined during the configuration process. In particular, the macro HAVE MPI will
be defined or undefined in this file, depending on whether AztecOO was built in
MPI mode or not. We will use HAVE MPI below to determine if our example code
should be compiled with MPI support or not.

Lines 2–7

Include the appropriate implementation of the Epetra Comm class. If AztecOO
was built in MPI mode, the macro “HAVE MPI” will be defined and this example
will be built with MPI support. If not, then the example will be built in serial mode.
Note that these lines of code, lines 15–20 and lines 60–62 are the only difference
between a serial and distributed memory version of the example.

9



AztecOOTM Users Guide 2.1 Explanation of Figure 1

1 // @HEADER
2 // ***********************************************************************
3 //
4 // AztecOO: An Object-Oriented Aztec Linear Solver Package
5 // Copyright (2002) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //

10 // This library is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU Lesser General Public License as
12 // published by the Free Software Foundation; either version 2.1 of the
13 // License, or (at your option) any later version.
14 //
15 // This library is distributed in the hope that it will be useful, but
16 // WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 // Lesser General Public License for more details.
19 //
20 // You should have received a copy of the GNU Lesser General Public
21 // License along with this library; if not, write to the Free Software
22 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
23 // USA
24 // Questions? Contact Michael A. Heroux (maherou@sandia.gov)
25 //
26 // ***********************************************************************
27 // @HEADER
28
29 #include "AztecOO_config.h"
30 #include "AztecOO_Version.h"
31 #ifdef HAVE_MPI
32 #include "mpi.h"
33 #include "Epetra_MpiComm.h"
34 #else
35 #include "Epetra_SerialComm.h"
36 #endif
37 #include "Epetra_Map.h"
38 #include "Epetra_Vector.h"
39 #include "Epetra_CrsMatrix.h"
40 #include "AztecOO.h"
41
42 int main(int argc, char *argv[]) {
43
44 #ifdef HAVE_MPI
45 MPI_Init(&argc,&argv);
46 Epetra_MpiComm Comm( MPI_COMM_WORLD );
47 #else
48 Epetra_SerialComm Comm;
49 #endif
50 if (Comm.MyPID()==0)
51 cout << AztecOO_Version() << endl << endl;
52
53 cout << Comm <<endl;
54
55 int NumMyElements = 100;
56 // Construct a Map that puts same number of equations on each processor
57 Epetra_Map Map(-1, NumMyElements, 0, Comm);
58 int NumGlobalElements = Map.NumGlobalElements();
59
60 // Create a Epetra_Matrix
61 Epetra_CrsMatrix A(Copy, Map, 3);
62
63 // Add rows one-at-a-time
64 double negOne = -1.0;
65 double posTwo = 2.0;
66 for (int i=0; i<NumMyElements; i++) {
67 int GlobalRow = A.GRID(i); int RowLess1 = GlobalRow - 1; int RowPlus1 = GlobalRow + 1;
68
69 if (RowLess1!=-1) A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowLess1);
70 if (RowPlus1!=NumGlobalElements) A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowPlus1);
71 A.InsertGlobalValues(GlobalRow, 1, &posTwo, &GlobalRow);
72 }
73
74 // Finish up
75 A.FillComplete();
76
77 // Create x and b vectors
78 Epetra_Vector x(Map);
79 Epetra_Vector b(Map);
80 b.Random(); // Fill b with random values
81
82 // Create Linear Problem
83 Epetra_LinearProblem problem(&A, &x, &b);
84 // Create AztecOO instance
85 AztecOO solver(problem);
86
87 solver.SetAztecOption(AZ_precond, AZ_Jacobi);
88 solver.Iterate(100, 1.0E-8);
89
90 cout << "Solver performed " << solver.NumIters() << " iterations." << endl
91 << "Norm of true residual = " << solver.TrueResidual() << endl;
92 #ifdef HAVE_MPI
93 MPI_Finalize() ;
94 #endif
95 return 0;
96 }
97

Figure 1. Simple AztecOO/Epetra Example
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Lines 8–11

Include the other necessary Epetra and AztecOO header files. It is a good practice
to explicitly include header files for all classes you explicitly use, and only those
header files.

Line 13

Start of main program.

Lines 15–21

Depending on whether or not AztecOO was built in MPI mode1, MPI will be initial-
ized and an Epetra MpiComm object will be constructed, or an Epetra SerialComm
object will be constructed. Please note that, in principle, the serial version of this
example would work, even if AztecOO were built in MPI mode. Serial mode is
always available. Line 21 prints the Epetra Comm object to cout.

Line 23

Define the local problem dimension. NumMyElements will be used to define an
Epetra Map that has 100 elements on each processor. In turn the map will be
used to construct vectors with 100 entries on each processor and matrices with
100 rows on each processor.

Lines 24–25

Constructs an Epetra Map object that has NumMyElements elements spread across
the parallel (or serial) machine. The first argument indicates that we are not spec-
ifying the global number of elements, but allowing the Epetra Map constructor to
compute it as the sum of NumMyElements defined on each calling processor. The
second argument is the number of elements assigned to the calling processors.
The third argument (a “0”) indicates that our global indices are zero-based. Fortran
users would typically pass in a “1” here. The fourth argument is the Comm object
we just built.

1Whether or not Trilinos, and AztecOO as a Trilinos package, is built in MPI mode is determined
by how the Trilinos (or AztecOO) configure script in invoked. If no MPI-related arguments are
passed to the configure script, then packages are built in serial mode only. If one or more MPI
options are invoked, then packages are built with MPI support (in addition to serial support).
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Line 26

Once an Epetra Map object is constructed, we can query it for how many total
elements are in the map2. In this way, the remainder of our code can operate
independent of how data is distributed.

Line 29

Instantiates (creates) an Epetra CrsMatrix. The first argument tells the constructor
whether or not data passed in to this object should be copied (user values and
indices will be copied to internal storage) or viewed (user values and indices will
be pointed to by this object and the user must guarantee the integrity of that data).
View mode is available across many Epetra classes. In general, this is a very
dangerous practice. However, in certain very important situations, it is essential to
have this mode. This is especially true when using Epetra with Fortran, or when
accepting matrix data from other parts of application where it is too expensive to
replicate the data storage.

The second argument is the Epetra Map object we just constructed. The third argu-
ment is an advisory value telling the constructor approximately how many nonzero
values will be defined for each row of the matrix3. We are constructing a tridiagonal
matrix, so the value “3” is appropriate.

At this point the matrix is an empty “bucket” ready to receive matrix values and
indices. Also, at this point, most of the methods in the Epetra CrsMatrix cannot be
called successfully for this object.

Lines 31–43

These lines insert values and indices into the matrix we just instantiated. Our
matrix is tridiagonal with a value of 2 at each diagonal and -1 on the immediate
off-diagonals. We do not go into detail about the methods called here. The reader
should look at the Epetra User Guide [11] or the online reference material at the
Trilinos home page [12].

2For readers who are not familiar with a single-program, multiple data (SPMD) programming
model, it may be useful to read a bit about it. Typing “SPMD tutorial” into a web search engine
should be a sufficient starting point.

3getting this value wrong does not affect the correctness of results, but may affect performance
and efficient use of memory
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Lines 45–48

Once the matrix is constructed, we create our vectors b and x using the same map
that determined the layout of the matrix rows. We also fill b with random values
(line 48).

Lines 50–53

Now that A, x and b are formed, we can define a linear problem instance. This
object will in turn be used to define an AztecOO instance. Note that it is possi-
ble to construct AztecOO objects in other ways, but we strongly recommend use
of the constructor shown in line 53. Note that when the AztecOO object is con-
structed, the parameter and option values listed in Section 3 will be set to their
default values. These defaults can be changed by calling the SetAztecOption()
and SetAztecParam() methods.

Lines 55–56

Once the solver object is instantiated, we change the value of AZ precond to
AZ Jacobi. Note that the key/value pairs passed in to this method can be any
valid pair as defined in Section 3. Next we call the Iterate() method, passing in the
maximum number of iterations that can be performed and a tolerance that should
be used to test for convergence. Depending on the values of the Aztec parameters
and options, this method will attempt to solve the problem using the prescribed
preconditioner (if any) and the specified iterative method. It will also print inter-
mediate results if the user has requested them. Upon exit from this method, the
problem will hopefully be solved and the solution will be in x which in turn is part of
the linear problem instance. Also upon exit, a number of methods can be called to
determine the results of the iterations.

Lines 58–59

Print results from calling the solver.

Lines 60–62

If our code was compile in MPI mode, we need to call MPI Finalize() for proper
clean up.

Line 64

Program exit.
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3 Aztec Options and Parameters
Because AztecOO is partly a wrapper around Aztec, much of the control and se-
lection of solver options and parameters is done via two method calls that set Aztec
options and parameters, namely SetAztecOption() and SetAztecParam(). Most of
the options and parameters are identical to those found in Aztec 2.1. However,
there are a few new options and parameters. Below we list all options and param-
eters, including the default value and description of each.

3.1 Aztec Options

The following list of key/value pairs can be used with the SetAztecOption() method
to change the behavior of the Iterate() method:

Specifications

options[AZ solver] Specifies solution algorithm. DEFAULT: AZ gmres.

AZ cg Conjugate gradient (only applicable to symmet-
ric positive definite matrices).

AZ gmres Restarted generalized minimal residual.

AZ cgs Conjugate gradient squared.

AZ tfqmr Transpose-free quasi-minimal residual.

AZ bicgstab Bi-conjugate gradient with stabilization.

AZ lu Sparse direct solver (single processor only).
Note: This option is available only when
–enable-aztecoo-azlu is specified on the
AztecOO configure script invocation com-
mand

options[AZ precond] Specifies preconditioner. DEFAULT: AZ none.

AZ none No preconditioning.

AZ Jacobi k step Jacobi (block Jacobi for DVBR matrices
where each block corresponds to a VBR block).
The number of Jacobi steps, k, is set via op-
tions[AZ poly ord].
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AZ Neumann Neumann series polynomial where the polyno-
mial order is set via options[AZ poly ord].

AZ ls Least-squares polynomial where the polynomial
order is set via options[AZ poly ord].

AZ sym GS Non-overlapping domain decomposition (addi-
tive Schwarz) k step symmetric Gauss-Siedel.
In particular, a symmetric Gauss-Siedel domain
decomposition procedure is used where each
processor independently performs one step of
symmetric Gauss-Siedel on its local matrix, fol-
lowed by communication to update boundary
values before the next local symmetric Gauss-
Siedel step. The number of steps, k, is set via
options[AZ poly ord].

AZ dom decomp Domain decomposition preconditioner (additive
Schwarz). That is, each processor augments its
submatrix according to options[AZ overlap] and
approximately “solves” the resulting subsystem
using the solver specified by

options[AZ subdomain solve].
Note: options[AZ reorder] determines whether
matrix equations are reordered (RCM) before
“solving” submatrix problem.

options[AZ subdomain solve] Specifies the solver to use on each subdomain when
options[AZ precond] is set to AZ dom decomp DE-
FAULT: AZ ilut.

AZ lu Approximately solve processor’s submatrix via
a sparse LU factorization in conjunction with a
drop tolerance params[AZ drop]. The current
sparse lu factorization is provided by the pack-
age Y12M [22]. Note: This option is available
only when –enable-aztecoo-azlu is specified
on the AztecOO configure script invocation
command

AZ ilut Similar to AZ lu using Saad’s ILUT instead
of LU [17]. The drop tolerance is given by
params[AZ drop] while the fill-in is given by
params[AZ ilut fill].

15
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AZ ilu Similar to AZ lu using ilu(k) instead of LU with k
determined by options[AZ graph fill]

AZ rilu Similar to AZ ilu using rilu(k,ω) instead of ilu(k)
with ω (0 ≥ ω ≥ 1) given by params[AZ omega]
[10].

AZ bilu Similar to AZ ilu using block ilu(k) instead of
ilu(k) where each block corresponds to a VBR
block.

AZ icc Similar to AZ ilu using icc(k) instead of ilu(k)
[16].

options[AZ conv] Determines the residual expression used in con-
vergence checks and printing. DEFAULT: AZ r0.
Note that this feature is overridden if the user regis-
ters an AztecOO StatusTest object with the AztecOO
solver instance. The iterative solver terminates if
the corresponding residual expression is less than
params[AZ tol]:

AZ r0 ‖r‖2/‖r(0)‖2

AZ rhs ‖r‖2/‖b‖2

AZ Anorm ‖r‖2/‖A‖∞
AZ noscaled ‖r‖2

AZ sol ‖r‖∞/(‖A‖∞ ∗ ‖x‖1 + ‖b‖∞)

AZ weighted ‖r‖WRMS

where ‖ · ‖WRMS =
√

(1/n)
∑n

i=1(ri/wi)2,
n is the total number of unknowns, w is
a weight vector provided by the user via
params[AZ weights] and r(0) is the initial resid-
ual. Note: AZ weighted is not available in
AztecOO.

options[AZ output] Specifies information (residual expressions - see op-
tions[AZ conv]) to be printed. DEFAULT: 1.

AZ all Print out the matrix and indexing vectors for
each processor. Print out all intermediate resid-
ual expressions.

AZ none No intermediate results are printed.
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AZ warnings Only Aztec warnings are printed.

AZ last Print out only the final residual expression.

> 0 Print residual expression every op-
tions[AZ output] iterations.

options[AZ pre calc] Indicates whether to use factorization information
from previous calls to Iterate(). DEFAULT: AZ calc
if the user is using the native Aztec preconditioners
selected via options[AZ precond]. If the user has reg-
istered an Epetra Operator object using the SetPrec-
Operator() method, then this operator will be used as
the preconditioner and it is assumed that the precon-
ditioner is already constructed.

AZ calc Use no information from previous Iterate() calls.

AZ recalc Use preprocessing information from a previous
call but recalculate preconditioning factors. This
is primarily intended for factorization software
which performs a symbolic stage.

AZ reuse Use preconditioner from a previous Iterate() call,
do not recalculate preconditioning factors. Also,
use scaling factors from previous call to scale
the right hand side, initial guess and the final
solution.

options[AZ graph fill] The level of graph fill-in (k) for incomplete factoriza-
tions: ilu(k), icc(k), bilu(k). DEFAULT: 0

options[AZ max iter] Maximum number of iterations. DEFAULT: 500, un-
less an statustest object has been registered using
the SetStatusTest() method in which case this option
is ignored.

options[AZ poly ord] The polynomial order when using polynomial precon-
ditioning. Also, the number of steps when using Ja-
cobi or symmetric Gauss-Seidel preconditioning. DE-
FAULT: 3 for polynomial preconditioners, 1 for Jacobi
and Gauss-Seidel preconditioners.

options[AZ overlap] Determines the submatrices factored with the domain
decomposition algorithms (see options[AZ precond]).
DEFAULT: 0.
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AZ diag Factor the local submatrix defined on this pro-
cessor augmented by a diagonal (block diago-
nal for VBR format) matrix. This diagonal matrix
corresponds to the diagonal entries of the ma-
trix rows (found on other processors) associated
with external elements. This can be viewed as
taking one Jacobi step to update the external el-
ements and then performing domain decompo-
sition with AZ none on the residual equations.

k Augment each processor’s local submatrix with
rows from other processors. The new rows are
obtained in k steps (k ≥ 0). Specifically at each
augmentation step, rows corresponding to exter-
nal unknowns are obtained. These external un-
knowns are defined by nonzero columns in the
current augmented matrix not containing a cor-
responding row on this processor. After the k
steps, all columns associated with external un-
knowns are discarded to obtain a square matrix.
The resulting procedure is an overlapped addi-
tive Schwarz procedure.

options[AZ type overlap] Determines how overlapping subdomain results are
combined when different processors have computed
different values for the same unknown. DEFAULT:
AZ standard.

AZ standard The resulting value of an unknown is determined
by the processor owning that unknown. Informa-
tion from other processors about that unknown
is discarded.

AZ symmetric Add together the results obtained from differ-
ent processors corresponding to the same un-
known. This keeps the preconditioner symmet-
ric if a symmetric technique was used on each
subdomain.

options[AZ kspace] Krylov subspace size for restarted GMRES.
DEFAULT: 30.
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options[AZ reorder] Determines whether RCM reordering will be done in
conjunction with domain decomposition incomplete
factorizations. 1 indicates RCM reordering is used.
0 indicates that equations are not reordered. DE-
FAULT: 1.

options[AZ keep info] Determines whether matrix factorization information
will be kept after this solve (for example to solve the
same system with another right hand side, see op-
tions[AZ pre calc]). 1 indicates factorization informa-
tion is kept. 0 indicates that factorization information
is discarded. DEFAULT: 0.

options[AZ orthog] GMRES orthogonalization scheme.
DEFAULT: AZ classic.

AZ classic 2 steps of classical Gram-Schmidt orthogonal-
ization.

AZ modified Modified Gram-Schmidt orthogonalization.

options[AZ aux vec] Determines r̃ (a required vector within some iterative
methods). The convergence behavior varies slightly
depending on how this is set. DEFAULT: AZ resid.

AZ resid r̃ is set to the initial residual vector.

AZ rand r̃ is set to random numbers between -1 and 1.
NOTE: When using this option, the convergence
depends on the number of processors (i.e. the
iterates obtained with x processors differ from
the iterates obtained with y processors if x �= y).

3.2 Aztec parameters

The double precision array params is set up by the AztecOO solver instance and is
of length AZ PARAMS SIZE. Because of this, we do not support options[AZ conv]
= AZ weighted). This type of functionality is still possible by defining an implemen-
tation of the AztecOO StatusTest abstract class.

Below we list the key/value pairs that can be used with the SetAztecParam() method:
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Specifications

params[AZ tol] Specifies tolerance value used in conjunction with
convergence tests. DEFAULT: 10−6.

params[AZ drop] Specifies drop tolerance used in conjunction with LU
or ILUT preconditioners (see description below for
ILUT).
DEFAULT: 0.0.

params[AZ ilut fill] ILUT uses two criteria for determining the number of
nonzeros in the resulting approximate factorizations.
For examples, setting params[AZ ilut fill] = 1.3, re-
quires that the ILUT factors contain no more than
approximately 1.3 times the number of nonzeros of
the original matrix. Additionally, ILUT drops all el-
ements in the resulting factors that are less than
params[AZ drop]. Thus, when params[AZ drop] is set
to zero, nothing is dropped and the size of the matrix
factors is governed only by params[AZ ilut fill]. How-
ever, positive values of params[AZ drop] may result in
matrix factors containing significantly fewer nonzeros.
[17]
DEFAULT: 1.

params[AZ omega] Damping or relaxation parameter used for RILU.
When params[AZ omega] is set to zero, RILU cor-
responds to ILU(k). When it is set to one, RILU
corresponds to MILU(k) where k is given by op-
tions[AZ graph fill]. [10]
DEFAULT: 1.

params[AZ weights] When options[AZ conv] = AZ weighted, the i ’th local
component of the weight vector is stored in the loca-
tion params[AZ weights+i].

params[AZ rthresh] Parameter used to modify the diagonal entries of
the matrix that is used to compute any of the
incomplete factorization preconditioners. When
params[AZ omega] is set to zero, RILU corresponds
to ILU(k). When it is set to one, RILU corresponds
to MILU(k) where k is given by options[AZ graph fill].
[10]
DEFAULT: 1.
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3.3 Return status

The double precision array status of length AZ STATUS SIZE returned from Iter-
ate()4. The contents of status are described below.

Specifications

status[AZ its] Number of iterations taken by the iterative method.

status[AZ why] Reason why Iterate() terminated.

AZ normal User requested convergence criteria is satisfied.

AZ param User requested option is not available.

AZ breakdown Numerical breakdown occurred.

AZ loss Numerical loss of precision occurred.

AZ ill cond The Hessenberg matrix within GMRES is ill-
conditioned. This could be caused by a num-
ber of reasons. For example, the precondition-
ing matrix could be nearly singular due to an un-
stable factorization (note: pivoting is not imple-
mented in any of the incomplete factorizations).
Ill-conditioned Hessenberg matrices could also
arise from a singular application matrix. In this
case, GMRES tries to compute a least-squares
solution.

AZ maxits Maximum iterations taken without convergence.

status[AZ r] The true residual norm corresponding to the choice
options[AZ conv] (this norm is calculated using the
computed solution).

status[AZ scaled r] The true residual ratio expression as defined by op-
tions[AZ conv].

4All integer information returned from Iterate() is cast into double precision and stored in status.
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status[AZ rec r] Norm corresponding to options[AZ conv] of final
residual or estimated final residual (recursively com-
puted by iterative method). Note: When using the
2-norm, tfqmr computes an estimate of the residual
norm instead of computing the residual.

status[AZ solve time] Utilization time in Aztec to solve system.

status[AZ Aztec version] Version number of Aztec.

When AztecOO returns abnormally, the user may elect to restart using the current
computed solution as an initial guess.

4 Diagonal Perturbations and
Incomplete Factorizations

One of the new features in AztecOO that was not part of Aztec 2.1 is the ability
compute incomplete factorizations of perturbed systems. One attribute of coupled
multi-physics problems is that incomplete factorizations can be difficult to compute,
even if the original matrix A is well-conditioned. A few sources of difficulty are:

1. Zero diagonal entries. In this case, unless fill-in occurs prior to dividing by the
zero diagonal, or we perform some type of pivoting, the factorization will fail
or produce unusable factors. In some instances even when fill-in does occur,
the diagonal value may be too small to produce a usable factorization.

2. Singular principle sub-matrices. In this case, boundary conditions are miss-
ing or insufficient to determine a nonsingular upper left sub-matrix.

3. Singularity due to domain partitioning. When executing in parallel using ad-
ditive Schwarz methods, we observe situations where an incomplete factor-
ization for the entire domain exists but one or more factorizations for the sub-
domains do not.

One straightforward technique to address poorly conditioned factors is to introduce
diagonal perturbations. In this situation, the incomplete factorization is performed
on a matrix that is identical to A except that diagonal entries are perturbed, usually
to increase diagonal dominance. This idea was introduced by Manteuffel [15] as a
means for computing incomplete Cholesky decompositions for symmetric positive
definite systems and extended to nonsymmetric matrices by van der Vorst [21],
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Saad [18] and Chow [4]. It is used for block entry matrices in a package called
BPKIT [5].

Since Krylov methods such as GMRES are invariant under scaling, and a very
large diagonal perturbation essentially makes the off-diagonal elements irrelevant,
one way to view diagonal perturbation is as establishing a continuum between
an accurate but poorly conditioned incomplete factorization and less accurate but
perfectly conditioned Jacobi diagonal scaling. Given this continuum, the strategy is
then to choose a minimal perturbation that sufficiently stabilizes the factorization.

4.1 Perturbation Strategies

As mentioned above, we often have difficulty computing usable incomplete fac-
torizations for our problems. The most common source of problems is that the
factorization may encounter a small or zero pivot, in which case the factorization
can fail, or even if the factorization succeeds, the factors may be so poorly condi-
tioned that use of them in the iterative phase produces meaningless results. Before
we can fix this problem, we must be able to detect it. To this end, we use a simple
but effective condition number estimate for (LU)−1.

Estimating Preconditioner Condition Numbers

The condition of a matrix B, called condp(B), is defined as condp(B) = ‖B‖p‖B−1‖p

in some appropriate norm p. condp(B) gives some indication of how many accurate
floating point digits can be expected from operations involving the matrix and its
inverse. A condition number approaching the accuracy of a given floating point
number system, about 15 decimal digits in IEEE double precision, means that any
results involving B or B−1 may be meaningless.

The ∞-norm of a vector y is defined as the maximum of the absolute values of the
vector entries, and the ∞-norm of a matrix C is defined as ‖C‖∞ = max‖y‖∞=1 ‖Cy‖∞.
A crude lower bound for the cond∞(C) is ‖C−1e‖∞ where e = (1, 1, . . . , 1)T . It is a
lower bound because cond∞(C) = ‖C‖∞‖C−1‖∞ ≥ ‖C−1‖∞ ≥ |C−1e‖∞.

For our purposes, we want to estimate cond∞(LU), where L and U are our in-
complete factors. Chow [4] demonstrates that ‖(LU)−1e‖∞ provides an effective
estimate for cond∞(LU). Furthermore, since finding z such that LUz = y is a ba-
sic kernel for applying the preconditioner, computing this estimate of cond∞(LU) is
performed by setting y = e, calling the solve kernel to compute z and then comput-
ing ‖z‖∞.
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A priori Diagonal Perturbations

Given the above method to estimate the conditioning of the incomplete factors, if
we detect that our factorization is too ill-conditioned we can improve the condi-
tioning by perturbing the matrix diagonal and restarting the factorization using this
more diagonally dominant matrix. In order to apply perturbation, prior to starting
the factorization, we compute a diagonal perturbation of our matrix A in Eq. 1 and
perform the factorization on this perturbed matrix. The overhead cost of perturbing
the diagonal is minimal since the first step in computing the incomplete factors is
to copy the matrix A into the memory space for the incomplete factors. We simply
compute the perturbed diagonal at this point. The actual perturbation values we
use are discussed below.

4.2 Strategies for Managing Condition Numbers

Without any prior knowledge of a problem, the first step to take when computing a
preconditioner is to compute the original factors without any diagonal perturbation.
This usually gives the most accurate factorization and, if the condition estimate
of the factors is not too big, will lead to the best convergence. If the condition
estimate of the original factors is larger than machine precision, say greater than
1.0e15, then it is possible that the factorization will destroy convergence of the iter-
ative solver. This will be evident if the iterative solver starts to diverge, stagnates,
or aborts because it detects ill-conditioning. In these cases, diagonal perturba-
tions may be effective. If the condition estimate of the preconditioner is well below
machine precision (less than 1.0e13) and one is not achieving convergence, then
diagonal perturbation will probably not be useful. Instead, one should try to con-
struct a more accurate factorization by increasing fill.

Strategies for a priori Diagonal Perturbations

The goal when applying a priori perturbations is to find a close to minimal perturba-
tion that reduces the condition estimate below machine precision (roughly 1.0e16).
In some practical settings, we use the strategy outlined in Figure 2. Essentially, we
replace the diagonal values (d1, d2, . . . , dn) with di = sign(di)α + diρ, i = 1, 2, . . . , n,
where n is the matrix dimension and sign(di) returns the sign of the diagonal entry.
This has the effect of forcing the diagonal values to have minimal magnitude of α
and to increase each by an amount proportional to ρ, and still keep the sign of the
original diagonal entry.
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1. Set the absolute threshold α = 0.0 and the relative threshold ρ = 1.0 (equiva-
lent to no perturbation).

2. Define perturbed diagonal entries as di = sign(di)α + diρ and compute the
incomplete factors L and U .

3. Compute condest = ‖(LU)−1e‖∞ where e = (1, 1, . . . , 1)T .

4. If failure (condest > 1015 or convergence is poor), set α = 10−5, ρ = 1.0.
Repeat Steps 2 and 3.

5. If failure, set α = 10−5, ρ = 1.01. Repeat Steps 2 and 3.

6. If failure, set α = 10−2, ρ = 1.0. Repeat Steps 2 and 3.

7. If failure, set α = 10−2, ρ = 1.01. Repeat Steps 2 and 3.

8. If still failing, continue alternate increases in the two threshold values.

Figure 2. Simple a priori Threshold Strategy
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5 Optimal reuse of AztecOO for
Repeated Solves

In many practical situations, a linear solver is being called repeatedly to solve prob-
lems that have similar numeric properties and similar or identical nonzero structure.
In these cases, it is often beneficial to reuse in later solves some or all of the work
performed in formulating the preconditioner for an earlier solve. The Aztec op-
tion options[AZ pre calc] allows the user to specify that the preconditioner from the
previous solve should be retained for subsequent solves.

5.1 Reuse and the SetPrecOperator() Method

A user can overrides the Aztec preconditioner options by forming their own pre-
conditioner that conforms to the Epetra Operator interface. In particular, users
may construct ML and Ifpack preconditioners for use with AztecOO. Once an Epe-
tra Operator-compliant preconditioner is constructed, it can be registered with an
AztecOO object as the preconditioner. In this situation, the preconditioner will
never be reset by AztecOO. Instead, the user has this responsibility.
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AztecOO configure Options

Most often AztecOO’s configure command will be invoked automatically as
part of the Trilinos-level configure command. Regardless of how AztecOO’s
configure command is invoked, the following options can be used to customize
the configure process. These options can also be listed by executing

Command: ./nfigure --help

in the main AztecOO directory. In fact, obtaining the options this way is preferred,
since option may have changed since the publiction of this document. However, for
convenience, we list the configuration options presently available:

‘configure’ configures aztecoo 3.3d to adapt to many kinds of systems.

Usage: configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as

VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:

-h, --help display this help and exit

--help=short display options specific to this package

--help=recursive display the short help of all the included packages

-V, --version display version information and exit

-q, --quiet, --silent do not print ‘checking...’ messages

--cache-file=FILE cache test results in FILE [disabled]

-C, --config-cache alias for ‘--cache-file=config.cache’

-n, --no-create do not create output files

--srcdir=DIR find the sources in DIR [configure dir or ‘..’]

Installation directories:

--prefix=PREFIX install architecture-independent files in PREFIX

[/usr/local]

--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX

[PREFIX]

By default, ‘make install’ will install all the files in
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‘/usr/local/bin’, ‘/usr/local/lib’ etc. You can specify

an installation prefix other than ‘/usr/local’ using ‘--prefix’,

for instance ‘--prefix=$HOME’.

For better control, use the options below.

Fine tuning of the installation directories:

--bindir=DIR user executables [EPREFIX/bin]

--sbindir=DIR system admin executables [EPREFIX/sbin]

--libexecdir=DIR program executables [EPREFIX/libexec]

--datadir=DIR read-only architecture-independent data [PREFIX/share]

--sysconfdir=DIR read-only single-machine data [PREFIX/etc]

--sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com]

--localstatedir=DIR modifiable single-machine data [PREFIX/var]

--libdir=DIR object code libraries [EPREFIX/lib]

--includedir=DIR C header files [PREFIX/include]

--oldincludedir=DIR C header files for non-gcc [/usr/include]

--infodir=DIR info documentation [PREFIX/info]

--mandir=DIR man documentation [PREFIX/man]

Program names:

--program-prefix=PREFIX prepend PREFIX to installed program names

--program-suffix=SUFFIX append SUFFIX to installed program names

--program-transform-name=PROGRAM run sed PROGRAM on installed program names

System types:

--build=BUILD configure for building on BUILD [guessed]

--host=HOST cross-compile to build programs to run on HOST [BUILD]

--target=TARGET configure for building compilers for TARGET [HOST]

Optional Features:

--disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no)

--enable-FEATURE[=ARG] include FEATURE [ARG=yes]

--enable-maintainer-mode enable make rules and dependencies not useful

(and sometimes confusing) to the casual installer

--enable-mpi MPI support

--disable-dependency-tracking speeds up one-time build

--enable-dependency-tracking do not reject slow dependency extractors

--enable-aztecoo-azlu Enable az-lu preconditioner. Default is no. Requires

y12m.

--enable-tests Build tests for all Trilinos packages (not all

packages are sensitive to this option) (default is
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yes)

--enable-examples Build examples for all Trilinos packages (not all

packages are sensitive to this option) (default is

yes)

Optional Packages:

--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]

--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)

--with-install=INSTALL_PROGRAM

Use the installation program INSTALL_PROGRAM rather

the default that is provided. For example

--with-install="/path/install -p"

--with-mpi-compilers=PATH

use MPI compilers mpicc, mpif77, and mpicxx, mpic++

or mpiCC in the specified path or in the default

path if no path is specified. Enables MPI

--with-mpi=MPIROOT use MPI root directory (enables MPI)

--with-mpi-libs="LIBS" MPI libraries ["-lmpi"]

--with-mpi-incdir=DIR MPI include directory [MPIROOT/include] Do not

use -I

--with-mpi-libdir=DIR MPI library directory [MPIROOT/lib] Do not use

-L

--with-ccflags additional CCFLAGS flags to be added: will prepend

to CCFLAGS

--with-cxxflags additional CXXFLAGS flags to be added: will

prepend to CXXFLAGS

--with-cflags additional CFLAGS flags to be added: will prepend

to CFLAGS

--with-fflags additional FFLAGS flags to be added: will prepend

to FFLAGS

--with-libs List additional libraries here. For example,

--with-libs=-lsuperlu or

--with-libs=/path/libsuperlu.a

--with-ldflags additional LDFLAGS flags to be added: will prepend

to LDFLAGS

--with-ar override archiver command (default is "ar cru")

--with-libdirs OBSOLETE use --with-ldflags instead. (ex.

--with-ldflags="-L<DIR> -L<DIR2>")

--with-incdirs additional directories containing include files:

will prepend to search here for includes, use -Idir

format

--with-lapacklib name of library containing LAPACK: will search lib
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directories for -lname

--with-blaslib name of library containing BLAS: will search lib

directories for -lname

--with-blas=<lib> use BLAS library <lib>

--with-lapack=<lib> use LAPACK library <lib>

Some influential environment variables:

CC C compiler command

CFLAGS C compiler flags

LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a

nonstandard directory <lib dir>

CPPFLAGS C/C++ preprocessor flags, e.g. -I<include dir> if you have

headers in a nonstandard directory <include dir>

CXX C++ compiler command

CXXFLAGS C++ compiler flags

F77 Fortran 77 compiler command

FFLAGS Fortran 77 compiler flags

CXXCPP C++ preprocessor

Use these variables to override the choices made by ‘configure’ or to help

it to find libraries and programs with nonstandard names/locations.

Report bugs to <maherou@sandia.gov>.
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