Surface plasmon sensing of gas phase contaminants using optical fiber.

PDF Version Also Available for Download.

Description

Fiber-optic gas phase surface plasmon resonance (SPR) detection of several contaminant gases of interest to state-of-health monitoring in high-consequence sealed systems has been demonstrated. These contaminant gases include H{sub 2}, H{sub 2}S, and moisture using a single-ended optical fiber mode. Data demonstrate that results can be obtained and sensitivity is adequate in a dosimetric mode that allows periodic monitoring of system atmospheres. Modeling studies were performed to direct the design of the sensor probe for optimized dimensions and to allow simultaneous monitoring of several constituents with a single sensor fiber. Testing of the system demonstrates the ability to detect 70mTorr ... continued below

Physical Description

24 p.

Creation Information

Thornberg, Steven Michael; White, Michael I.; Rumpf, Arthur Norman & Pfeifer, Kent Bryant October 1, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Fiber-optic gas phase surface plasmon resonance (SPR) detection of several contaminant gases of interest to state-of-health monitoring in high-consequence sealed systems has been demonstrated. These contaminant gases include H{sub 2}, H{sub 2}S, and moisture using a single-ended optical fiber mode. Data demonstrate that results can be obtained and sensitivity is adequate in a dosimetric mode that allows periodic monitoring of system atmospheres. Modeling studies were performed to direct the design of the sensor probe for optimized dimensions and to allow simultaneous monitoring of several constituents with a single sensor fiber. Testing of the system demonstrates the ability to detect 70mTorr partial pressures of H{sub 2} using this technique and <280 {micro}Torr partial pressures of H{sub 2}S. In addition, a multiple sensor fiber has been demonstrated that allows a single fiber to measure H{sub 2}, H{sub 2}S, and H{sub 2}O without changing the fiber or the analytical system.

Physical Description

24 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2009-6096
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/973354 | External Link
  • Office of Scientific & Technical Information Report Number: 973354
  • Archival Resource Key: ark:/67531/metadc933561

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 2, 2016, 2:45 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 13

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Thornberg, Steven Michael; White, Michael I.; Rumpf, Arthur Norman & Pfeifer, Kent Bryant. Surface plasmon sensing of gas phase contaminants using optical fiber., report, October 1, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc933561/: accessed November 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.