Effects of long and short relaxation times of particle interactions in dense and slow granular flows

PDF Version Also Available for Download.

Description

In this work, dense granular flows are numerically simulated using a discrete element method. The interaction of a pair of colliding particles is modeled as a parallel connection of a linear spring and a linear dashpot. Although the force model for particle interactions is simplistic for many practical problems, a significant amount of meaningful new physics can be extracted from the numerical simulations by studying the behavior of particle interaction time and its probability distribution. For instance, it is found that the probability distribution of particle contact ages is exponential for long-term contacts. The time scale of the exponential decay ... continued below

Physical Description

9 p.

Creation Information

Zhang, D. Z. (Duan Z.) & Rauenzahn, Rick M. January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this work, dense granular flows are numerically simulated using a discrete element method. The interaction of a pair of colliding particles is modeled as a parallel connection of a linear spring and a linear dashpot. Although the force model for particle interactions is simplistic for many practical problems, a significant amount of meaningful new physics can be extracted from the numerical simulations by studying the behavior of particle interaction time and its probability distribution. For instance, it is found that the probability distribution of particle contact ages is exponential for long-term contacts. The time scale of the exponential decay of the contact age probability is related to the rheological properties of the dense granular medium.

Physical Description

9 p.

Source

  • Submitted to: 4th ASME/JSME joint fluids engineering conference, July 6-10, 2003, Waikki, Honolulu, Hawaii

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-7410
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976467
  • Archival Resource Key: ark:/67531/metadc933489

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 11:24 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Zhang, D. Z. (Duan Z.) & Rauenzahn, Rick M. Effects of long and short relaxation times of particle interactions in dense and slow granular flows, article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc933489/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.