Extreme ultraviolet lithography: A few more pieces of the puzzle

PDF Version Also Available for Download.

Description

The work described in this dissertation has improved three essential components of extreme ultraviolet (EUV) lithography: exposure tools, photoresist, and metrology. Exposure tools. A field-averaging illumination stage is presented that enables nonuniform, high-coherence sources to be used in applications where highly uniform illumination is required. In an EUV implementation, it is shown that the illuminator achieves a 6.5% peak-to-valley intensity variation across the entire design field of view. In addition, a design for a stand-alone EUV printing tool capable of delivering 15 nm half-pitch sinusoidal fringes with available sources, gratings and nano-positioning stages is presented. It is shown that the ... continued below

Physical Description

116

Creation Information

Anderson, Christopher N. May 20, 2009.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

The work described in this dissertation has improved three essential components of extreme ultraviolet (EUV) lithography: exposure tools, photoresist, and metrology. Exposure tools. A field-averaging illumination stage is presented that enables nonuniform, high-coherence sources to be used in applications where highly uniform illumination is required. In an EUV implementation, it is shown that the illuminator achieves a 6.5% peak-to-valley intensity variation across the entire design field of view. In addition, a design for a stand-alone EUV printing tool capable of delivering 15 nm half-pitch sinusoidal fringes with available sources, gratings and nano-positioning stages is presented. It is shown that the proposed design delivers a near zero line-edge-rougness (LER) aerial image, something extremely attractive for the application of resist testing. Photoresist. Two new methods of quantifying the deprotection blur of EUV photoresists are described and experimentally demonstrated. The deprotection blur, LER, and sensitivity parameters of several EUV photoresists are quantified simultaneously as base weight percent, photoacid generator (PAG) weight percent, and post-exposure bake (PEB) temperature are varied. Two surprising results are found: (1) changing base weight percent does not significantly affect the deprotection blur of EUV photoresist, and (2) increasing PAG weight percent can simultaneously reduce LER and E-size in EUV photoresist. The latter result motivates the development of an EUV exposure statistics model that includes the effects of photon shot noise, the PAG spatial distribution, and the changing of the PAG distribution during the exposure. In addition, a shot noise + deprotection blur model is used to show that as deprotection blur becomes large relative to the size of the printed feature, LER reduction from improved counting statistics becomes dominated by an increase in LER due to reduced deprotection contrast. Metrology. Finally, this dissertation describes MOSAIC, a new wavefront metrology that enables complete wavefront recovery from print or aerial image based measurements. This new technique, based on measuring the local focal length of the optic at sampled positions in the pupil, recovers the curvature of the aberration and uses the curvature to recover the aberration itself. In a modeled EUV implementation, MOSAIC is shown to recover the SEMATECH Berkeley MET wavefront with a 4.2% RMS error: a 4% improvement over the reported errors of the original lateral shearing interferometry wavefront measurement.

Physical Description

116

Source

  • Related Information: Designation of Academic Dissertation: Doctor of Philosophy; Academic Degree: PhD; Name of Academic Institution: University of California, Berkeley; Location of Academic Institution: Berkeley, CA

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: LBNL-1965E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 961531
  • Archival Resource Key: ark:/67531/metadc933033

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • May 20, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Oct. 2, 2017, 12:40 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 16

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Anderson, Christopher N. Extreme ultraviolet lithography: A few more pieces of the puzzle, thesis or dissertation, May 20, 2009; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc933033/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.