Genetic refinement of cloud-masking algorithms for the multi-spectral thermal imager (MTI)

PDF Version Also Available for Download.

Description

The Multi-spectral Thermal Imager (MTI) is a high-performance remote-sensing satellite designed, owned and operated by the U.S. Department of Energy, with a dual mission in environmental studies and in nonproliferation. It has enhanced spatial and radiometric resolutions and state-of-the-art calibration capabilities. This instrumental development puts a new burden on retrieval algorithm developers to pass this accuracy on to the inferred geophysical parameters. In particular, the atmospheric correction scheme assumes the intervening atmosphere will be modeled as a plane-parallel horizontally-homogeneous medium. A single dense-enough cloud in view of the ground target can easily offset reality from the calculations, hence the need ... continued below

Physical Description

3 p.

Creation Information

Hirsch, K. L. (Karen L.); Davis, A. B. (Anthony B.); Harvey, N. R. (Neal R.); Rohde, C. A. (Charles A.) & Brumby, Steven P. January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Multi-spectral Thermal Imager (MTI) is a high-performance remote-sensing satellite designed, owned and operated by the U.S. Department of Energy, with a dual mission in environmental studies and in nonproliferation. It has enhanced spatial and radiometric resolutions and state-of-the-art calibration capabilities. This instrumental development puts a new burden on retrieval algorithm developers to pass this accuracy on to the inferred geophysical parameters. In particular, the atmospheric correction scheme assumes the intervening atmosphere will be modeled as a plane-parallel horizontally-homogeneous medium. A single dense-enough cloud in view of the ground target can easily offset reality from the calculations, hence the need for a reliable cloud-masking algorithm. Pixel-scale cloud detection relies on the simple facts that clouds are generally whiter, brighter, and colder than the ground below; spatially, dense clouds are generally large on some scale. This is a good basis for searching multispectral datacubes for cloud signatures. However, the resulting cloud mask can be very sensitive to the choice of thresholds in whiteness, brightness, temperature, and connectivity. We have used a genetic algorithm trained on (MODIS Airborne Simulator-based) simulated MTI data to design a cloud-mask. Its performance is compared quantitatively to hand-drawn training data and to the EOS/Terra MODIS cloud mask.

Physical Description

3 p.

Source

  • "Submitted to: "IGARSS 2001 - International Geoscience and Remote Sensing Symposium, Sydney, Australia, July 9-July 13, 2001".

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-2089
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 975295
  • Archival Resource Key: ark:/67531/metadc933021

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 11:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hirsch, K. L. (Karen L.); Davis, A. B. (Anthony B.); Harvey, N. R. (Neal R.); Rohde, C. A. (Charles A.) & Brumby, Steven P. Genetic refinement of cloud-masking algorithms for the multi-spectral thermal imager (MTI), article, January 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc933021/: accessed June 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.