Metallurgy, thermal stability, and failure mode of the commercial Bi-Te-based thermoelectric modules.

PDF Version Also Available for Download.

Description

Bi-Te-based thermoelectric (TE) alloys are excellent candidates for power generation modules. We are interested in reliable TE modules for long-term use at or below 200 C. It is known that the metallurgical characteristics of TE materials and of interconnect components affect the performance of TE modules. Thus, we have conducted an extensive scientific investigation of several commercial TE modules to determine whether they meet our technical requirements. Our main focus is on the metallurgy and thermal stability of (Bi,Sb){sup 2}(Te,Se){sup 3} TE compounds and of other materials used in TE modules in the temperature range between 25 C and 200 ... continued below

Physical Description

60 p.

Creation Information

Yang, Nancy Y. C. & Morales, Alfredo Martin February 1, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Bi-Te-based thermoelectric (TE) alloys are excellent candidates for power generation modules. We are interested in reliable TE modules for long-term use at or below 200 C. It is known that the metallurgical characteristics of TE materials and of interconnect components affect the performance of TE modules. Thus, we have conducted an extensive scientific investigation of several commercial TE modules to determine whether they meet our technical requirements. Our main focus is on the metallurgy and thermal stability of (Bi,Sb){sup 2}(Te,Se){sup 3} TE compounds and of other materials used in TE modules in the temperature range between 25 C and 200 C. Our study confirms the material suite used in the construction of TE modules. The module consists of three major components: AlN cover plates; electrical interconnects; and the TE legs, P-doped (Bi{sub 8}Sb{sub 32})(Te{sub 60}) and N-doped (Bi{sub 37}Sb{sub 3})(Te{sub 56}Se{sub 4}). The interconnect assembly contains Sn (Sb {approx} 1wt%) solder, sandwiched between Cu conductor with Ni diffusion barriers on the outside. Potential failure modes of the TE modules in this temperature range were discovered and analyzed. The results show that the metallurgical characteristics of the alloys used in the P and N legs are stable up to 200 C. However, whole TE modules are thermally unstable at temperatures above 160 C, lower than the nominal melting point of the solder suggested by the manufacture. Two failure modes were observed when they were heated above 160 C: solder melting and flowing out of the interconnect assembly; and solder reacting with the TE leg, causing dimensional swelling of the TE legs. The reaction of the solder with the TE leg occurs as the lack of a nickel diffusion barrier on the side of the TE leg where the displaced solder and/or the preexisting solder beads is directly contact the TE material. This study concludes that the present TE modules are not suitable for long-term use at temperatures above 160 C due to the reactivity between the Sn-solder and the (Bi,Sb){sup 2}(Te,Se){sup 3} TE alloys. In order to deploy a reliable TE power generator for use at or below 200 C, alternate interconnect materials must be used and/or a modified module fabrication technique must be developed.

Physical Description

60 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2009-0758
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/957291 | External Link
  • Office of Scientific & Technical Information Report Number: 957291
  • Archival Resource Key: ark:/67531/metadc932786

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 8, 2016, 8:41 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 15

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Yang, Nancy Y. C. & Morales, Alfredo Martin. Metallurgy, thermal stability, and failure mode of the commercial Bi-Te-based thermoelectric modules., report, February 1, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc932786/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.