Solution behavior of PEO : the ultimate biocompatible polymer.

PDF Version Also Available for Download.

Description

Poly(ethylene oxide) (PEO) is the quintessential biocompatible polymer. Due to its ability to form hydrogen bonds, it is soluble in water, and yet is uncharged and relatively inert. It is being investigated for use in a wide range of biomedical and biotechnical applications, including the prevention of protein adhesion (biofouling), controlled drug delivery, and tissue scaffolds. PEO has also been proposed for use in novel polymer hydrogel nanocomposites with superior mechanical properties. However, the phase behavior of PEO in water is highly anomalous and is not addressed by current theories of polymer solutions. The effective interactions between PEO and water ... continued below

Physical Description

40 p.

Creation Information

Curro, John G. & Frischknecht, Amalie Lucile November 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 19 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Poly(ethylene oxide) (PEO) is the quintessential biocompatible polymer. Due to its ability to form hydrogen bonds, it is soluble in water, and yet is uncharged and relatively inert. It is being investigated for use in a wide range of biomedical and biotechnical applications, including the prevention of protein adhesion (biofouling), controlled drug delivery, and tissue scaffolds. PEO has also been proposed for use in novel polymer hydrogel nanocomposites with superior mechanical properties. However, the phase behavior of PEO in water is highly anomalous and is not addressed by current theories of polymer solutions. The effective interactions between PEO and water are very concentration dependent, unlike other polymer/solvent systems, due to water-water and water-PEO hydrogen bonds. An understanding of this anomalous behavior requires a careful examination of PEO liquids and solutions on the molecular level. We performed massively parallel molecular dynamics simulations and self-consistent Polymer Reference Interaction Site Model (PRISM) calculations on PEO liquids. We also initiated MD studies on PEO/water solutions with and without an applied electric field. This work is summarized in three parts devoted to: (1) A comparison of MD simulations, theory and experiment on PEO liquids; (2) The implementation of water potentials into the LAMMPS MD code; and (3) A theoretical analysis of the effect of an applied electric field on the phase diagram of polymer solutions.

Physical Description

40 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2004-6110
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/958378 | External Link
  • Office of Scientific & Technical Information Report Number: 958378
  • Archival Resource Key: ark:/67531/metadc932762

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 2004

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 1, 2016, 10:57 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 19

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Curro, John G. & Frischknecht, Amalie Lucile. Solution behavior of PEO : the ultimate biocompatible polymer., report, November 1, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc932762/: accessed July 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.