

Sitewide Monitoring at Agra, Kansas, June 2009

Environmental Science Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report

reports@adonis.osti.gov

This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.

Sitewide Monitoring at Agra, Kansas, June 2009

by

Applied Geosciences and Environmental Management Section Environmental Science Division, Argonne National Laboratory

June 2010

Contents

No	otation.	•••••		iv						
1 Introduction and Background 1										
2 Sampling and Analysis Activities										
	2.1Monitoring Well Sampling and Analyses2-2.2Measurement of Groundwater Levels2-2.3Handling and Disposal of Investigation-Derived Waste2-2.4Quality Control for Sample Collection, Handling, and Analysis2-									
3	Resul	ts an	d Discussion	3-1						
	 3.1 Analytical Results for Volatile Organic Compounds in Groundwater Samples and Lateral Distribution of the Contaminants									
4	Future	e Act	ions	4-1						
5	Refere	ences	5	5-1						
Aŗ	pendix	A:	Joint Work Plan for Sitewide Monitoring, Agra, Kansas	A-1						
Appendix B:		: B:	B: Sequence of Activities during the May-June 2009 Sitewide Monitoring Event and Field Measurements on Groundwater Samples							
Aŗ	pendix	C:	Data from Pace Analytical Services for Wastewater Sample	C-1						
Ap	pendix	D:	Quality Control Data	D-1						

Figures

2.1	Proposed locations for joint yearly monitoring	2-5
2.2	Proposed locations of large-diameter borehole installations on the former CCC/USDA facility at Agra, with proposed locations for IM-related groundwater monitoring wells and soil gas monitoring wells.	A 2-6
2.3	Permanent groundwater sampling locations and data logger locations at Agra, as of June 2009	2-7
3.1	Distribution of carbon tetrachloride in groundwater at Agra, as determined in May-June 2009 annual sitewide monitoring	3-5
3.2	Groundwater level elevations at Agra on July 30, 2009, as interpreted from automatically recorded data	3-6
	Tables	
1.1	Wells to be sampled in the annual sitewide monitoring and IM monitoring programs at Agra	1-3
3.1	Results of CCC/USDA annual sitewide groundwater monitoring and IM-related monitoring in May-June 2009	3-3
3.2	Summary of results of CCC/USDA sitewide groundwater monitoring in 2005-2009	3-4
B.1	Sequence of sitewide monitoring activities at Agra in May-June 2009	B-2
B.2	Field measurements made during sitewide monitoring in May-June	B-5
D.1	Quality control results for organic analyses of water samples by the purge-and-trap method at the AGEM Laboratory	D-2
D.2	Analytical results for quality control samples collected during sitewide monitoring in May-June 2009	D-4

Notation

AGEM	Applied Geosciences and Environmental Management
AS	air sparging
BGL	below ground level
°C	degree(s) Celsius
CCC	Commodity Credit Corporation
COC	chain of custody
DO	dissolved oxygen
EPA	U.S. Environmental Protection Agency
ft	foot (feet)
gal	gallon(s)
IM	interim measure
in.	inch(es)
KDHE	Kansas Department of Health and Environment
L	liter(s)
LDB	large-diameter borehole
µg/L	microgram(s) per liter
µS/cm	microsiemen(s) per centimeter
mg/L	milligram(s) per liter
mL	milliliter(s)
min	minute(s)
mV	millivolt(s)
ORP	oxidation-reduction potential
ppb	part(s) per billion
PWS	public water supply
SVE	soil vapor extraction
TOC	top of casing
USDA	U.S. Department of Agriculture
VOC	volatile organic compound

Sitewide Monitoring at Agra, Kansas, June 2009

1 Introduction and Background

In 1985, carbon tetrachloride was discovered in the groundwater at Agra, Kansas, during routine sampling of public water supply wells. Two of Agra's four public water supply wells contained low but detectable levels of carbon tetrachloride; the concentrations in wells PWS-3 and PWS-4 exceeded the maximum contaminant level. These wells were removed from service in 1986, although they remain available for uses other than drinking water. Other public wells, outside the area of contamination, supply drinking water for the city of Agra.

In 1987-2005, the Kansas Department of Health and Environment (KDHE) and the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) conducted investigations to delineate the contaminant plume and to identify source areas for the contamination — which results from the past use of grain fumigants containing carbon tetrachloride. Source areas were identified on the former CCC/USDA grain storage facility property and on the Producers Agricultural Marketing Association, Inc., property located to the south (Argonne 2006). The contaminant plume extends to the southeast, toward well PWS-3, from the identified source areas.

Both the CCC/USDA and Pro-Ag Marketing are currently implementing KDHEapproved interim measures (IMs). To address the contamination identified on its former property, the CCC/USDA is implementing a source control IM consisting of large-diameter boreholes (LDBs) coupled with soil vapor extraction (SVE) and air sparging (AS). Pro-Ag Marketing plans to use groundwater extraction to address the downgradient plume. The CCC/USDA and Pro-Ag completed installation of the two interim measures in May 2009 and August 2009, respectively. The performance and assessments of the effectiveness of the IMs are being reported separately by the responsible entities.

As part of the IM process, the KDHE (2008) requested the development of a joint sitewide groundwater monitoring plan to allow periodic assessment of the effectiveness of the separate IMs being implemented by the CCC/USDA and Pro-Ag, through monitoring of the level of contamination and the resulting change in both the extent and internal configuration of the downgradient plume. A *Joint Work Plan for Sitewide Monitoring* was developed by the CCC/USDA through its technical consultant, Argonne National Laboratory, and was reviewed,

approved, and signed by Pro-Ag Marketing and subsequently submitted to the KDHE on May 12, 2009.

The KDHE (2009a) provided comments on the *Joint Work Plan* on May 27, 2009, requesting submission of a revised version. To minimize delays, the KDHE allowed the CCC/USDA to proceed with the scheduled annual sampling proposed in the *Joint Work Plan*. The sampling was to be conducted according to the previously approved low-flow sampling methodology (Argonne 2009). Argonne conducted the first annual sampling event for the CCC/USDA on June 15-16, 2009. The finalized, signed version of the *Joint Work Plan* provided to the KDHE on November 9, 2009, is in Appendix A.

Table 1.1 lists the monitoring and public water supply wells to be sampled under the *Joint Work Plan*, plus the wells being sampled to monitor the respective IMs. The entity responsible for each monitoring element is indicated, along with well completion dates and well registration numbers.

The subject of this report is the initial sitewide groundwater sampling event that occurred on June 15-16, 2009, under the *Joint Work Plan*.

TABLE 1.1	Wells to be sampled in the annual sitewide monitoring and IM monitoring programs at
Agra.	

			De	epth (ft BGL)		_	
Well	Well Type	Casing Diameter (in.)	Screen Interval	Flter Pack Interval	Total	Completion Date	Registration Number
monitoring	— 11 wells						
KMW02 MW-C MW-H MW-J MW-L MW-M MW-R SB23S SB36 PWS-3 DW98	Monitoring Monitoring Monitoring Monitoring Monitoring Monitoring Monitoring Monitoring Public Domestic	2 2 2 2 2 2 2 1 4 12 8	57-97 35-55 43-53 54-66 66-76 ^a 54.5-68.5 ^b 46.5-66 ^c 49-55 42.7-62.7 65-125	20-97 33-55 41-53 54-66 64-76 ^a 52.5-68.5 ^b 40-66 ^c 48-55 40-64.7	99 55 53 66 80 75 66 55 62.7 - 59 5	9/30/1987 6/3/1997 6/5/1997 6/13/1997 6/14/1997 6/15/1997 2/25/1998 5/10/2001 7/15/1996 4/30/1954	45580 118623 118620 118618 118616 118510 353498 321229 108165 –
CCC/USD	A source area	IM — 8 well	ls		00.0		
KMW03 MW-P MW-Q GW-1 GW-2 GW-3 GW-4 GW-5	Monitoring Monitoring Monitoring Monitoring Monitoring Monitoring Monitoring	2 2 1 1 1 1 1	74-89 39.5-59 ^d 49.5-69 ^e 43-53 43-53 43-53 43-53 43-53 43-53	NR 34-59 ^d 44-69 ^e 41-53 41-53 41-53 41-53 41-53	89 59 53 53 53 53 53 53	10/2/1987 2/25/1998 2/25/1998 7/1/2009 7/1/2009 7/1/2009 7/1/2009 7/1/2009	45583 353496 353497 426347 426346 426345 426344 426343
Pro-Ag soι	ırce area IM —	- 13 wells					
KMW01 MW-2 MW-F MW-G MW-1 MW-0 PMW-01 PMW-02 PMW-02 PMW-03 PMW-04 PMW-05 PMW-05	Monitoring Monitoring Monitoring Monitoring Monitoring Monitoring Monitoring Monitoring Monitoring Monitoring	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	43-53 39-59 ^f 65-75 ^g 89-99 36-71 38-58 49-59 49-59 52.5-62.5 53-63 54.5-64.5 49-59	20-63 37-59 ^f 64-75 ^g 34-71 36-58 47-59 47-59 50.5-62.5 51-63 52.5-64.5 47-59	63 59 ^f 75 ^g 100 71 58 59 59 62.5 63 64.5 59	10/7/1987 5/31/1997 6/2/1997 6/13/1997 6/4/1997 8/29/1997 8/21/2009 8/21/2009 8/21/2009 8/21/2009 8/21/2009 8/21/2009	45581 118626 118622 118619 119090 427877 427825 427824 427963 427962 427964
	Well monitoring KMW02 MW-C MW-H MW-J MW-L MW-R SB23S SB36 PWS-3 DW98 CCC/USD/ KMW03 MW-P MW-Q GW-1 GW-2 GW-3 GW-1 GW-2 GW-3 GW-4 GW-5 Pro-Ag sou KMW01 MW-Q GW-5 Pro-Ag sou KMW01 MW-2 MW-F MW-G MW-F MW-G MW-I MW-0 PMW-03 PMW-04 PMW-05 PMW-06 PMW-07	WellWell Typemonitoring11 wellsKMW02MonitoringMW-CMonitoringMW-HMonitoringMW-JMonitoringMW-LMonitoringMW-LMonitoringMW-RMonitoringMW-RMonitoringSB23SMonitoringSB36MonitoringPWS-3PublicDW98DomesticCCC/USDA source areaKMW03MonitoringMW-PMonitoringGW-1MonitoringGW-2MonitoringGW-3MonitoringGW-4MonitoringGW-5MonitoringGW-5MonitoringGW-5MonitoringGW-6MonitoringMW-0MonitoringMW-1MonitoringMW-2MonitoringMW-3MonitoringMW-0MonitoringMW-0MonitoringMW-0MonitoringMW-0MonitoringMW-0MonitoringMW-0MonitoringMW-0MonitoringPMW-03MonitoringPMW-04MonitoringPMW-05MonitoringPMW-05MonitoringPMW-06MonitoringPMW-07Monitoring	WellWell TypeCasing Diameter (in.)monitoring — 11 wellsKMW02Monitoring2MW-CMonitoring2MW-CMonitoring2MW-HMonitoring2MW-JMonitoring2MW-LMonitoring2MW-KMonitoring2MW-RMonitoring2SB23SMonitoring1SB36Monitoring4PWS-3Public12DW98Domestic8CCC/USDA source areaIM—8 wellKMW03Monitoring2MW-PMonitoring2MW-QMonitoring1GW-1Monitoring1GW-2Monitoring1GW-3Monitoring1GW-4Monitoring1GW-5Monitoring1Pro-Ag source area IM — 13 wellsKMW01Monitoring2MW-6Monitoring2MW-0Monitoring2MW-0Monitoring2MW-0Monitoring2MW-0Monitoring2MW-0Monitoring2MW-0Monitoring2MW-0Monitoring2MW-0Monitoring2PMW-01Monitoring2PMW-02Monitoring2PMW-03Monitoring2PMW-04Monitoring2PMW-05Monitoring2PMW-06<	Well Well Type Casing Diameter (in.) Screen Interval monitoring — 11 wells 57-97 KMW02 Monitoring 2 35-55 MW-C Monitoring 2 35-55 MW-H Monitoring 2 43-53 MW-J Monitoring 2 66-76 ^a MW-L Monitoring 2 46.5-66 ^c SB23S Monitoring 4 42.7-62.7 PWS-3 Public 12 65-125 DW98 Domestic 8 - CCC/USDA source area IM—8 wells KMW03 Monitoring 2 74-89 MW-P Monitoring 2 39.5-59 ^d 39.5-59 ^d MW-Q Monitoring 1 43-53 GW-3 GW-3 Monitoring 1 43-53 GW-4 Monitoring 1 43-53 GW-4 Monitoring 1 43-53 GW-5 Monitoring 2 43-53 GW-5 Monitoring 2	Well Well Type Casing Diameter (in.) Screen Interval Flter Pack Interval monitoring — 11 wells 57-97 20-97 MW-C Monitoring 2 35-55 33-55 MW-C Monitoring 2 35-55 33-55 MW-H Monitoring 2 43-53 41-53 MW-J Monitoring 2 54-66 54-66 MW-L Monitoring 2 46.5-66° 40-66° SB23S Monitoring 4 42.7-62.7 40-64.7 PWS-3 Public 12 65-125 - DW98 Domestic 8 - - CCC/USDA source area IM — 8 wells KMW03 Monitoring 2 34-53 41-53 GW-1 Monitoring 1 43-53 41-53 GW-23 41-53 41-53 GW-2 Monitoring 1 43-53 41-53 GW-23 41-53 41-53 GW-4 41-53 41-53 GW-4 41-53	WellWell TypeCasing Diameter (in.)Depth (ft BGL)monitoring — 11 wellsScreen IntervalFlter Pack IntervalTotalKMW02Monitoring2 $57-97$ $20-97$ 99 MW-CMonitoring2 $35-55$ $33-55$ 55 MW-HMonitoring2 $43-53$ $41-53$ 53 MW-LMonitoring2 $54-66$ $54-66$ 66 MW-LMonitoring2 $54-56.5^{b}$ $52.5-68.5^{b}$ 75 MW-MMonitoring1 $49-55$ $48-55$ 55 SB23Monitoring1 $49-55$ $48-55$ 55 SB36Monitoring4 $42.7-62.7$ $40-64.7$ 62.7 PWS-3Public12 $65-125$ DW98Domestic8DW98Domestic14 $43-53$ $41-53$ 53 GW-2Monitoring2 $39.5-59^{d}$ $34-59^{d}$ 59 MW-PMonitoring1 $43-53$ $41-53$ 53 GW-2Monitoring1 $43-53$ $41-53$ 53 GW-3Monitoring1 $43-53$ $41-53$ 53 GW-4Monitoring1 $43-53$ $41-53$ 53 GW-4Monitoring2 $39-59^{f}$ $37-59^{f}$ 59^{f} MW-7Monitoring2 $39-59^{f}$ $37-59^{f}$ 59^{f} MW-8Monitoring2 $39-59^{f}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

^a Reported screen interval for MW-L = 70-80 ft BGL; reported filter pack interval = 68-80 ft BGL.

^b Reported screen interval for MW-M = 59-69 ft BGL; reported filter pack interval = 57-75 ft BGL.

^c Reported screen interval for MW-R = 44.45-63.95 ft BGL; reported filter pack interval = 38-66 ft BGL.

^d Reported screen interval for MW-P = 35.42-54.92 ft BGL; reported filter pack interval = 31-59 ft BGL.

^e Reported screen interval for MW-Q = 43.28-62.78 ft BGL; reported filter pack interval = 38-69 ft BGL.

^g Reported screen interval for MW-F = 65-75 ft BGL; reported filter pack interval = 63-85 ft BGL; total depth = 85 ft BGL.

2 Sampling and Analysis Activities

2.1 Monitoring Well Sampling and Analyses

The sitewide groundwater sampling event conducted by the CCC/USDA on June 15-16, 2009, involved the 11 designated joint sitewide groundwater monitoring wells (marked with purple boxes in Figure 2.1), plus wells MW-P, MW-Q, and KMW03 (being sampled by the CCC/USDA to monitor its IM — also shown in Figure 2.1). Per agreement with the KDHE (2009b), the May 2009 results for the 5 groundwater wells installed on the former CCC/USDA property to monitor the source control IM (GW-1 through GW-5) are considered part of the June 2009 annual monitoring event; resampling of those wells in June was not required, although the water levels were measured. Wells GW-1 through GW-5 lie close together in the CCC/USDA remediation area, near well MW-P; they are shown in Figure 2.2.

The May-June sampling began with measurement of water levels in the monitoring wells. Low-flow groundwater sampling techniques were then used to purge and sample the wells in accordance with U.S. Environmental Protection Agency (EPA) guidelines (Puls and Barcelona 1996; Yeskis and Zavala, 2002). The low-flow sampling of monitoring wells involved the use of a bladder pump and field measurement equipment designed to determine when representative formation water was entering the well screen. Stabilization of formation water in the screened area of the well was determined by measuring the static water levels and monitoring the levels of pH, temperature, specific conductivity, oxidation-reduction potential (ORP), and dissolved oxygen (DO) during pumping through the in-line flow cell.

The following procedure was followed for each well sampled:

- 1. A bladder pump was inserted into the well to a depth midway between the top and bottom of the screen. To minimize disturbance of the solids that are typically present at the bottom of a well, care was taken not to lower the pump to the bottom of the casing.
- 2. The pumping rate for the bladder pump was set to ensure that minimal drawdown occurred in each well during pumping. The rate was monitored by measuring the static water level periodically throughout pumping and was modified as appropriate to minimize fluctuations in water levels.

- 3. Polyethylene tubing was used to connect the bladder pump to an in-line flow cell. Formation parameters, including pH, temperature, specific conductivity, ORP, and DO, were measured continuously in the in-line flow cell during pumping. Measurements were recorded every 4 min until three successive measurements for each parameter were within a range indicating that the formation water was stable. The range for formation stabilization varies for each parameter, as follows: pH, within 0.1; temperature, within 3%; specific conductivity, within 3%; ORP, within 10 mV; and DO, within 10%.
- 4. After stabilization of the formation water parameters, the polyethylene tubing was disconnected from the in-line flow cell, and a representative groundwater sample was pumped through the tubing into laboratory-approved containers.
- 5. The polyethylene tubing for each well was kept and dedicated for reuse at that specific well. In addition, pumping rate data were recorded for each well as a reference for subsequent sampling events.

The sequence of activities during the May-June 2009 sampling event is summarized in Appendix B, Table B.1. The field measurements — depth, temperature, pH, conductivity, DO, and ORP — recovered during the sampling event are in Appendix B, Table B.2.

Groundwater samples designated for analyses for volatile organic compounds (VOCs) were collected in appropriate laboratory containers, labeled, packaged, and chilled to 4°C by placement in ice-filled coolers. The samples were shipped via an overnight delivery service to the Applied Geosciences and Environmental Management (AGEM) Laboratory at Argonne for VOCs analyses with EPA Method 524.2 (EPA 1995). Aliquots of selected samples (chosen in the field) were also shipped to TestAmerica Laboratories, Inc., South Burlington, Vermont, for verification VOCs analyses according to EPA Contract Laboratory Program protocols.

The analytical results are presented and discussed in Section 3.1.

2.2 Measurement of Groundwater Levels

In addition to the manual water level measurements made during the May-June 2009 sampling event, data recorders have been gathering long-term data on groundwater elevations at selected locations throughout the investigation area (Figure 2.3) since 2005. This effort continues to provide information regarding potential changes in groundwater flow and gradient that is useful in the interpretation of inferred downgradient movement of the carbon tetrachloride plume. The groundwater level data are presented and discussed in Section 3.2.

2.3 Handling and Disposal of Investigation-Derived Waste

Purge water generated as potentially contaminated investigation-derived waste was containerized on-site in 55-gal drums during the annual sampling event. The accumulated purge and development water (approximately 190 gal) was sampled on September 24, 2009, and analyzed at a KDHE-certified laboratory (Pace Analytical Services, Lenexa, Kansas) for VOCs (including ethylene dibromide) and nitrates. The analytical results are in Appendix C. The concentrations of carbon tetrachloride, chloroform, ethylene dibromide, and nitrate were below the KDHE standards. No VOCs were detected, and the nitrate value was 3.4 mg/L. On November 18, 2009, the wastewater was taken to the Sabetha municipal water treatment facility for disposal, although KDHE (2009c) guidance would permit its release on the site.

2.4 Quality Control for Sample Collection, Handling, and Analysis

Quality assurance/quality control procedures followed during the June 2009 monitoring event are described in detail in the *Master Work Plan* (Argonne 2002). The results are summarized as follows:

• Sample collection and handling activities were monitored by the documentation of samples as they were collected and the use of chain-of-custody forms and custody seals to ensure sample integrity during handling and shipment.

- Samples designated for VOCs analyses were received with custody seals intact and at the appropriate preservation temperature. All samples sent to the AGEM Laboratory were analyzed within the required holding times.
- Quality control samples collected to monitor sample-handling activities (trip blanks and equipment rinsates) and method blanks analyzed with the samples to monitor analytical methodologies were all free of carbon tetrachloride and chloroform contamination.
- Groundwater samples were analyzed for VOCs at the AGEM Laboratory by the purge-and-trap method on a gas chromatograph-mass spectrometer system. Calibration checks analyzed with each sample delivery group were required to be within ±20% of the standard. Surrogate standard determinations performed on samples and blanks, as shown in Appendix D, Table D.1, were within the specified range of 80-120% for all samples, in either the initial analysis or a successful reanalysis.
- Results from the AGEM Laboratory for dual analyses of the groundwater samples are in Appendix D, Table D.2. The results of the dual analyses compare well, with average relative percent difference values for carbon tetrachloride and chloroform of approximately 5% and 13%, respectively, indicating consistency in the sampling and analytical methodologies. Analytical results for quality control samples are also in Appendix D, Table D.2.
- In accordance with the procedures defined in the *Master Work Plan* (Argonne 2002), groundwater samples were submitted to a second laboratory (TestAmerica) for verification analysis according to the protocols of the EPA's Contract Laboratory Program. Documentation is in Appendix D. The results from the two laboratories compare favorably over the range of contaminant concentrations detected.

FIGURE 2.1 Proposed locations (purple boxes) for joint yearly monitoring. Also shown are wells KMW03, MW-P, and MW-Q, which are sampled to monitor the CCC/USDA source control IM, and wells KMW01, MW-2, MW-F, MW-G, MW-I, and MW-O, which are sampled to monitor the Pro-Ag Marketing IM.

FIGURE 2.2 Proposed locations of large-diameter borehole installations on the former CCC/USDA facility at Agra, with proposed locations for IM-related groundwater monitoring wells and soil gas monitoring wells.

FIGURE 2.3 Permanent groundwater sampling locations and data logger locations at Agra, as of June 2009.

3 Results and Discussion

3.1 Analytical Results for Volatile Organic Compounds in Groundwater Samples and Lateral Distribution of the Contaminants

The analytical data for VOCs in the groundwater samples collected by Argonne for the CCC/USDA in conjunction with the annual sitewide groundwater monitoring event in May-June 2009 are in Table 3.1. For comparison, Table 3.2 represents a comprehensive summary of CCC/USDA results for carbon tetrachloride and chloroform in groundwater, beginning with the 2005 targeted investigation and continuing through the October 2008 pre-remedial baseline study and the May-June 2009 sitewide monitoring. A map illustrating the current levels and distribution of carbon tetrachloride contamination in groundwater, based on the results of the May-June 2009 sitewide sampling, is in Figure 3.1. This map includes the locations of the September 2009 Pro-Ag Marketing monitoring well installations for the sake of completeness. A separate report of the results of the September 2009 sampling event will be provided to the KDHE by Pro-Ag.

Comparison of the carbon tetrachloride levels in groundwater during the 2008 preremedial baseline study and in May-June 2009, after the installation of the SVE/AS remedial system (Table 3.2), indicates mixed results to date. Installation of the LDB/SVE/AS pilot test was initiated in December 2008 and completed in January 2009. Subsequently, during the period May 13-16, 2009, five groundwater monitoring wells (GW-1 through GW-5) were installed on the former CCC/USDA property to track the performance of the approved pilot system. The official start-up date for the SVE/AS system was May 29, 2009.

At the time of the initial annual sitewide sampling event, the CCC/USDA pilot test had been in operation for a period of less than one month (May 29 to June 15-16, 2009). The sitewide monitoring in June 2009 was the initial sampling event (Table 3.2) for newly installed wells GW-1 through GW-5, at the treatment area locations shown in Figure 2.2. The nearest previous groundwater sampling occurred at location SB46 during the 2005 investigation. The maximum carbon tetrachloride concentration in groundwater at location SB46 in 2005 was 1,710 μ g/L (Argonne 2006). The higher concentrations measured in June 2009 in wells GW-2 (6,090 μ g/L) and GW-3 (9,198 μ g/L) are consistent with the interpretation illustrated in Figure 2.1 (based on the 2005 results) of a high-concentration area centered slightly to the south of location SB46.

Continuing monitoring of the treatment area wells will indicate the progress of the CCC/USDA source control effort.

In general, the slight reductions in the levels of carbon tetrachloride observed in the downgradient wells nearest the remedial system could potentially be attributable to the effects of the SVE/AS system. Well MW-P, located along the southern margin of the former facility, exhibited a subtle reduction in contaminant levels, from 318 μ g/L during the 2008 baseline study to 260 μ g/L in the June 2009 sampling (Table 3.2). The proximity of MW-P to the recently installed SVE/AS remediation pilot could account for this early indication of contaminant reduction. Subsequent sampling events will be necessary to verify this hypothesis. Additional reductions noted in downgradient locations proximal to the pilot test area, such as MW-Q and MW-J, are too low to be considered of significance at this time (Table 3.2 and Figure 3.1).

The results of the May-June 2009 annual sampling event revealed more significant changes in the internal configuration and extent of the carbon tetrachloride plume than the subtle changes observed proximal to the remediation pilot test area on the former CCC/USDA facility. Results for monitoring wells MW-L and MW-M, located along the farthest extent of the bi-lobate plume structures internal to the plume, showed minor reductions in carbon tetrachloride levels from 64 μ g/L to 23 μ g/L and from 112 μ g/L to 84 μ g/L, respectively, between 2005 and 2009.

The most significant changes were observed at locations farther downgradient. Public water supply well PWS-3, in which carbon tetrachloride had previously (2005) not been detectable, showed an increase to 7.6 μ g/L in 2009 (Table 3.2); this concentration is above the KDHE risk-based standard for carbon tetrachloride. The concentration at location SB36 remained unchanged. The carbon tetrachloride concentration at location SB23S, at the farthest downgradient position (toe) of the plume as currently defined, increased, from 1.5 μ g/L in the 2005 investigation to 59 μ g/L during the 2009 annual sitewide sampling event (Table 3.2). This increase might indicate an extension of the plume to the southeast. Wells SB36, PWS-3, and SB23S were not sampled during the 2008 baseline event, as the scope of the targeted investigation at that time focused on the former CCC/USDA facility and its immediate environs.

3.2 Groundwater Level Data

Observations made during interpretation of the results from the recent groundwater monitoring event indicate that the groundwater flow direction and gradients did not change significantly from that depicted in the report of the 2005 investigation (Argonne 2006), remaining consistent with a predominant groundwater flow direction to the south-southeast from the vicinity of the former CCC/USDA facility and the Pro-Ag Marketing facility. Groundwater elevation data were recovered on July 30, 2009. The water level contour map in Figure 3.2 confirms the south to southeasterly flow direction identified in previous investigations.

				Concentr	ation (µg/L)		_
Sampling Responsibility	Well	Sampling Date	Carbon Tetrachloride	Chloroform	Methylene Chloride	1,2- Dichloroethane	Nitrate Nitrogen (mg/L)
Joint	KMW02	6/16/09	0.2 J ^a	0.3 J	ND ^b	ND	_
Joint	MW-C	6/15/09	ND	ND	ND	ND	_
Joint	MW-H	6/15/09	ND	0.3 J	ND	ND	_
Joint	MW-J	6/16/09	13	0.1 J	ND	ND	_
Joint	MW-L	6/16/09	23	1.1	ND	ND	-
Joint	MW-M	6/15/09	84	1.5	ND	ND	-
Joint	MW-R	6/15/09	ND	ND	ND	ND	_
Joint	PWS-3	6/16/09	7.6	ND	ND	ND	_
Joint	SB23S	6/16/09	59	0.8 J	ND	ND	_
Joint	SB36	6/16/09	5.1	0.4 J	ND	ND	-
Joint	DW98	6/16/09	0.4 J	0.4 J	ND	ND	-
Argonne	KMW03	6/16/09	ND	ND	ND	ND	_
Argonne	MW-P	6/16/09	260	11	ND	ND	_
Argonne	MW-Q	6/16/09	0.8 J	ND	ND	ND	-
Argonne	GW-1	5/20/09	114	8.1	ND	ND	_
Argonne	GW-2	5/20/09	6090	46	ND	ND	_
Argonne	GW-3	5/20/09	9198	28	ND	ND	-
Argonne	GW-4	5/20/09	127	2.3	ND	ND	_
Argonne	GW-5	5/20/09	ND	ND	ND	ND	-

TABLE 3.1 Results of CCC/USDA annual sitewide groundwater monitoring and IM-related monitoring in May-June 2009.

 $^a\,$ Qualifier J indicates an estimated concentration below the quantitation limit of 1.0 μ g/L for purge-and-trap analyses at the AGEM Laboratory.

^b ND, not detected at instrument detection limit of 0.1 μg/L for analyses at the AGEM Laboratory or a reporting limit of 1.0 μg/L for analyses at Pace Analytical.

^c 1,2-Dichloroethane detected at 5.8 μg/kg in a soil sample collected during well installation at 49.5-50 ft BGL.

		2005 Targeted Investigation				2008 Plume Update/Baseline Event				2009 Initial Sitewide Monitoring						
		-	Depth	(ft TOC)	Concentrati	ion (μg/L)	-	Depth (ft TOC)	Concentrat	ion (μg/L)	-	Depth (ft TOC)	Concentrat	ion (μg/L)
Sampling Responsibility	Well	Sample Date	To Water	Total	Carbon Tetrachloride	Chloroform	Sample Date	To Water	Total Depth	Carbon Tetrachloride	Chloroform	Sample Date	To Water	Total Depth	Carbon Tetrachloride	Chloroform
Joint	KMW02	5/19/05	47.7	98.34	0.4 J	0.3 J	10/29/08	45	97	ND	ND	6/16/09	41.8	97	0.2 J	0.3 J
Joint	MW-C	5/22/05	43.59	52.93	ND	ND	10/29/08	40.4	55	ND	ND	6/15/09	39	55	ND	ND
Joint	MW-H	5/25/05	46.26	51.95	ND	0.7 J	10/28/08	43.3	53	ND	ND	6/15/09	42.1	53	ND	0.3 J
Joint	MW-J	5/21/05	44.2	65.14	13	ND	10/29/08	40	66	32	0.3 J	6/16/09	39.45	66	13	0.1 J
Joint	MW-L	5/22/05	46.21	74.5	64	1.7	10/28/08	43.6	75	21	0.9 J	6/16/09	42.05	75.8	23	1.1
Joint	MW-M	5/25/05	46.52	66.52	112	1.9	10/29/08	44.6	69	106	2.4	6/15/09	42.8	69	84	1.5
Joint	MW-R	5/20/05	46.88	65.5	ND	ND	10/28/08	41.5	63.95	ND	ND	6/15/09	39.22	63.95	ND	ND
Joint	PWS-3	6/3/05	_	_	ND	ND	_	_	_	_	-	6/16/09	_	_	7.6	ND
Joint	SB23S	5/20/05	34	51.1	1.5	ND	_	_	_	_	-	6/16/09	30.5	55	59	0.8 J
Joint	SB36	6/2/05	40.73	61.25	5.1	0.4 J	_	_	_	_	-	6/16/09	37.15	62.7	5.1	0.4 J
Joint	DW98	6/3/09	-	-	0.3 J	0.2 J	-	-	-	_	_	6/16/09	39.4	59.5	0.4 J	0.4 J
Argonne	KMW03	5/21/05	46.71	89.92	ND	ND	10/28/08	43.3	89	2.1	ND	6/16/09	39.47	89	ND	ND
Argonne	MW-P	6/13/05	46.38	58.7	423	3.5	10/28/08	42.35	54.92	318	5.5	6/16/09	38.65	54.92	260	11
Argonne	MW-Q	5/21/05	46.58	66.36	0.5 J	ND	10/28/08	42.3	62.78	1.3	ND	6/16/09	39.11	62.78	0.8 J	ND
Argonne	GW-1	_	-	_	_	_	_	_	_	_	_	5/20/09	38.75	53	114	8.1
Argonne	GW-2	_	-	_	_	_	_	_	_	_	_	5/20/09	39.15	53	6090	46
Argonne	GW-3	_	-	_	_	_	_	-	_	_	_	5/20/09	39	53	9198	28
Argonne	GW-4	-	_	_	_	_	_	_	_	_	_	5/20/09	40.1	53	127	2.3
Argonne	GW-5	-	-	-	-	-	-	-	_	-	-	5/20/09	39.05	53	ND	ND

TABLE 3.2 Summary of results of CCC/USDA sitewide groundwater monitoring in 2005-2009.

	Domestic well			
J	Estimated concentration below the quantitation limit (1.0 μg/L).			

FIGURE 3.1 Distribution of carbon tetrachloride in groundwater at Agra, as determined in May-June 2009 annual sitewide monitoring.

FIGURE 3.2 Groundwater level elevations at Agra on July 30, 2009, as interpreted from automatically recorded data.

4 Future Actions

The next KDHE-approved joint sitewide groundwater monitoring event is scheduled for June 2010. In keeping with the joint agreement, Pro-Ag Marketing and its technical consultants will be conducting the sampling effort. The 2010 effort will include the wells to be jointly reported, as well as the monitoring wells installed in support of the Pro-Ag remediation efforts.

5 References

Argonne, 2002, *Final Master Work Plan: Environmental Investigations at Former CCC/USDA Facilities in Kansas, 2002 Revision*, ANL/ER/TR-02/004, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, by Argonne National Laboratory, Argonne, Illinois, December.

Argonne, 2006, *Final Report: Results of the 2005 Investigation of Contaminant Sources at Agra, Kansas*, ANL/EVS/AGEM/TR-06-02, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, July.

Argonne 2009, *Low-Flow Sampling Procedure*, ANL/EVS/AGEM/CHRON-1227, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, by Argonne National Laboratory, Argonne, Illinois, February 2.

KDHE, 2008, letter from E. Finzer (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding the *Interim Measure Work Plan/Design* for Agra, November 21.

KDHE, 2009a, letter from E. Finzer and C. Jaeger (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.) and J. Jirak (Pro-Ag Marketing Association, Kensington, Kansas), regarding the joint sitewide monitoring plan for Agra, May 27.

KDHE, 2009b, electronic mail message from E. Finzer (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to L.M. LaFreniere (Argonne National Laboratory, Argonne, Illinois), agreeing that wells GW1-GW5 did not need to be resampled in the sitewide monitoring event but requesting measurement of water levels in those wells, June 10.

KDHE, 2009c, electronic mail message from E. Finzer (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit

Corporation, U.S. Department of Agriculture, Washington, D.C.) and L.M. LaFreniere (Argonne National Laboratory, Argonne, Illinois), with guidelines for handling of investigation-derived waste, October 29.

Puls, R.W., and M.J. Barcelona, 1996, "Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures," EPA/540/S-95/504, in *Ground Water Issue*, Superfund Technology Support Center for Ground Water, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Ada, Oklahoma, April (www.epa.gov/tio/tsp/download/ lwflw2a.pdf).

Yeskis, D., and B. Zavala, 2002, *Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers: Ground Water Forum Issue Paper*, EPA 542-S-02-001, Technology Innovative Office, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C., May (http://www.epa.gov/tio/tsp/download/ gw_sampling_guide.pdf). Appendix A:

Joint Work Plan for Sitewide Monitoring, Agra, Kansas

Agra Joint Sitewide Monitoring March 8, 2010

Joint Work Plan for Sitewide Monitoring, Agra, Kansas

Background:

The objective of CCC/USDA investigations at Agra in 1995-2005 was to characterize the subsurface geologic and hydrologic conditions that exist at and adjacent to the former facility, including conditions at the private grain storage facility directly to the south, which is currently operated by the Pro-Ag Co-op. During these investigations, the presence of carbon tetrachloride was identified at levels exceeding the Kansas Tier 2 Risk-Based Screening Level and the EPA maximum contaminant level of $5.0 \mu g/L$ in groundwater. The most recent comprehensive investigation of the presence, levels, and distribution of this contaminant in the soil and groundwater at Agra was conducted in 2005.

During the investigation conducted by Argonne in 2005 on behalf of the CCC/USDA, three soil source areas were identified. Figure 1 illustrates the locations of these sources, the distribution of investigation/sampling points, the analytical results, and the interpreted extent of the carbon tetrachloride plume emanating from these identified source areas. A single source was identified on the former CCC/USDA facility. Two source areas were likewise identified on the property to the south that is currently operated by the Pro-Ag Co-op.

In response to a KDHE request in a letter dated July 17, 2006, the CCC/USDA developed the document *Interim Measure Conceptual Design for Remediation of Source Area Contamination at Agra, Kansas.* Upon KDHE approval of the conceptual design, a second document, *Interim Measure Work Plan/Design for Agra, Kansas*, was submitted to the KDHE in August 2008 and approved on November 21, 2008.

The interim measure (IM) at Agra was implemented in December 2008 and January 2009. As presented to and approved by the KDHE, a system of large-diameter boreholes and associated soil vapor extraction and air sparging wells was installed at the former CCC/USDA facility as part of this action (Figure 2). The system is expected to be completed, tested, and operational in April 2009.

In recent months, Pro-Ag has been negotiating an IM plan for the Co-op property with KDHE. The most recent draft received conditional approval from KDHE in March 2009.

Proposed Monitoring Plan:

As part of the IM process, the KDHE requested the development of a sitewide monitoring plan to allow periodic assessment of the success of the IM remediation system, as well as the level of contamination and potential changes in both the extent and internal configuration of the carbon tetrachloride plume. The KDHE envisioned that the proposed monitoring plan would be developed and implemented jointly by CCC and the Pro-Ag Co-op.

The CCC/USDA proposes to conduct groundwater sampling at the 11 locations shown in Figure 3, as follows: MW-R, MW-J, KMW02, DW-98, PWS-3, SB23S, SB36, MW-C, MW-H,

1

Agra Joint Sitewide Monitoring March 8, 2010

MW-M, and MW-L. Pro-Ag will sample the same locations. The frequency of monitoring will be yearly. The CCC/USDA will take the initial round of samples in June 2009, coincident with the CCC/USDA IM monitoring program. Pro-Ag will sample the following year (June 2010). Argonne will arrange for access at these locations, as necessary, for sampling by the CCC/USDA and Pro-Ag. The CCC/USDA will sample in odd-numbered years beginning in 2009, and the Pro-Ag Co-op will sample in even-numbered years beginning in 2010. After 2010, modifications to the locations and schedule will be negotiated if results of the monitoring program warrant.

1

In the case of the CCC/USDA, additional groundwater data will be available and presented from the CCC/USDA IM monitoring program (Figure 2). In addition to the 11 locations to be sampled as proposed above, the following wells will be also be sampled per the CCC/USDA IM monitoring program: groundwater monitoring wells MW-Q, MW-P, KMW03, and GW-1 through GW-5, plus soil gas monitoring wells.

In the case of Pro-Ag, additional groundwater data will be available as part of the Pro-Ag IM response currently being negotiated with the KDHE. Existing wells that may be included in the Pro-Ag IM monitoring program are (Figure 4) MW-O, KMW01, MW-2, MW-F, MW-I, and MW-G. As part of the IM, Pro-Ag may also be installing some new wells.

On behalf of the CCC/USDA, Argonne will sample the wells according to the approved lowflow procedure dated February 2, 2009. Argonne will also follow the procedures for preservation, shipment, and analysis of samples described in Sections 6.2 and 6.3 of Argonne's *Master Work Plan* for investigations in Kansas. Pro-Ag will use the same low-flow sampling protocol.

The CCC/USDA-Argonne will report the results of the CCC/USDA sitewide monitoring in 2009 and beyond within 90 days of the sampling. The sitewide monitoring report will include the elements in Section 3.0 of policy BER-RS-036, except that full reporting of items specific to monitoring of the CCC/USDA remediation system at Agra will occur separately, as described in the approved *Interim Measure Work Plan/Design* for the CCC/USDA remediation project.

The Pro-Ag Co-op will report the results of its sitewide monitoring in 2010 and beyond within 90 days of the sampling. The sitewide monitoring report will include the elements in Section 3.0 of policy BER-RS-036, except that full reporting of items specific to monitoring for the Pro-Ag IM will occur separately, as approved for that project.

The CCC/USDA-Argonne monitoring will be subject to all of the quality control provisions in the approved *Master Work Plan* for investigations in Kansas. In addition to the controls on sample collection and analysis at the Applied Geosciences and Environmental Management Laboratory at Argonne, 10% of the samples will be subjected to verification analysis by Contract Laboratory Program procedures at a second laboratory.

The Pro-Ag sitewide monitoring will be subject to the quality control provisions approved for the Pro-Ag IM project.

2

Agra Joint Sitewide Monitoring March 8, 2010

This plan has been developed by the CCC/USDA in coordination with Pro-Ag. The CCC/USDA and Pro-Ag agree to implement the plan as written, subject to any revisions negotiated between the KDHE, the CCC/USDA, and Pro-Ag.

ł

1 oc Teve Gilmore For CCC/USDA Signature LAS 0 For Pro-Ag Co-op Signature Date

3

FIGURE 1 Results of the 2005 investigation at Agra, with interpreted plume configuration and soil source areas.

FIGURE 2 Locations of large-diameter borehole installations on the former CCC/USDA facility at Agra, with locations for IM monitoring wells and soil gas monitoring installations.

FIGURE 3 Proposed locations (purple box) for yearly monitoring.

FIGURE 4 Anticipated locations (purple outline) of Pro-Ag IM monitoring.

Appendix B:

Sequence of Activities during the May-June 2009 Sitewide Monitoring Event and Field Measurements on Groundwater Samples

Sample Date	Time	Sample Location	Depth (ft BGL)	Sample	Chain of Custody	Shipping Date	Sample Description
5/20/09	10:13	GW-5	43-53	AGGW5-W-17925	4396	5/21/09	South of railroad track. Depth to water = 39.05 ft on May18. Purged dry with Waterra pump on May 18 and May 19 to develop. Purged dry again morning of May 20. Sampled with
5/20/09	11:09	GW-3	43-53	AGGW3-W-17894	4396	5/21/09	Between LDB1 and LDB3. Depth to water = 39.0 ft on May18. Purged dry with Waterra pump on May 18 and May 19 to develop. Purged dry again morning of May 20. Sampled later in the day with bailer after water level returned to 39.10 ft
5/20/09	12:53	GW-4	43-53	AGGW4-W-17895	4396	5/21/09	North of LDB5. Depth to water = 40.10 ft on May18. Purged dry with Waterra pump on May 18 and May 19 to develop. Purged dry again morning of May 20. Sampled later in the day with bailer after water level returned to 40.12 ft.
5/20/09	13:41	GW-2	43-53	AGGW2-W-17806	4396	5/21/09	Between LDB2 and LDB5. Depth to water = 39.15 ft on May18. Purged dry with Waterra pump on May 18 and May 19 to develop. Purged dry again morning of May 20. Sampled later in the day with bailer after water level returned to 41.52 ft.
5/20/09	13:51	GW-2	43-53	AGGW2-W-17893	4396	5/21/09	Replicate of sample AGGW2-W-17806.
5/20/09	15:35	GW-1	43-53	AGGW1-W-17896	4396	5/21/09	West of LDB2. Depth to water = 38.75 ft on May 18. Purged dry with Waterra pump on May 18 and May 19 to develop. Purged dry again morning of May 20. Sampled later in the day with bailer after water level returned to 42.05 ft.
5/20/09	15:59	QC	-	AGQCBR-W-17926	4396	5/21/09	Rinsate of decontaminated sampling bailer after collection of sample AGGW1-W-17896.
5/20/09	16:03	QC	-	AGQCTB-W-17807	4396	5/21/09	Trip blank sent to the AGEM Laboratory for organic analysis with water samples listed on COC 4396.
6/15/09	15:47	GW-5	43-53	AGGW5-Jun15-WL	_	-	Sample not collected. Depth to water from TOC = 39.23 ft. Depth of well = 53 ft.
6/15/09	16:04	GW-1	43-53	AGGW1-Jun15-WL	_	-	Sample not collected. Depth to water from TOC = 39.11 ft. Depth of well = 53 ft.
6/15/09	16:11	GW-3	43-53	AGGW3-Jun15-WL	_	-	Sample not collected. Depth to water from TOC = 39.51 ft. Depth of well = 53 ft.
6/15/09	16:26	GW-2	43-53	AGGW2-Jun15-WL	_	-	Sample not collected. Depth to water from TOC = 38.95 ft. Depth of well = 53 ft.
6/15/09	16:45	MW-H	43-53	AGMWH-W-17944	2519	6/17/09	Depth to water = 42.1 ft. Depth of 2-in. well = 53 ft. Sample collected by using low-flow bladder pump after purging of 15 L. Pump intake positioned at 48 ft.
6/15/09	16:46	GW-4	43-53	AGGW4-Jun15-WL	_	-	Sample not collected. Depth to water from TOC = 39.55 ft. Depth of well = 53 ft.

TABLE B.1 Sequence of sitewide monitoring activities at Agra in May-June 2009.

TABLE B.1 (Cont.)

Sample Date	Time	Sample Location	Depth (ft BGL)	Sample	Chain of Custody	Shipping Date	Sample Description
6/15/09	17:55	MW-C	35-55	AGMWC-W-17943	2519	6/17/09	Depth to water = 39.0 ft. Depth of 2-in. well = 55 ft. Sample collected by using low-flow bladder pump after purging of 6.5 L. Pump intake positioned at 45 ft.
6/15/09	18:24	MW-R	44.45- 63.95	AGMWR-W-17950	2519	6/17/09	Depth to water = 39.22 ft. Depth of 2-in. well = 63.95 ft. Sample collected by using low-flow bladder pump after purging of 7 L. Pump intake positioned at 54.20 ft.
6/15/09	20:27	MW-M	59-69	AGMWM-W-17947	2519	6/17/09	Depth to water = 42.8 ft. Depth of 2-in. well = 69 ft. Sample collected by using low-flow bladder pump after purging of 8 L. Pump intake positioned at 64 ft. Water was silty.
6/15/09	20:29	MW-M	59-69	AGMWMDUP-W- 17955	2519	6/17/09	Replicate of sample AGMWM-W-17947.
6/16/09	8:42	MW-L	70-80	AGMWL-W-17946	2519	6/17/09	Depth to water = 42.05 ft. Depth of 2-in. well = 75.8 ft. Sample collected by using low-flow bladder pump after purging of 6 L. Pump intake positioned at 73.8 ft. Bottom silted in to 73.8 ft during purge.
6/16/09	9:02	KMW03	74-89	AGKMW3-W-17942	2519	6/17/09	Depth to water = 39.47 ft. Depth of 2-in. well = 89 ft. Sample collected by using low-flow bladder pump after purging of 6.5 L. Pump intake positioned at 81.5 ft.
6/16/09	11:08	KMW02	57-97	AGKMW2-W-17941	2519	6/17/09	Depth to water = 41.8 ft. Depth of 2-in. well = 97 ft. Sample collected by using low-flow bladder pump after purging of 6 L. Pump intake positioned at 77 ft.
6/16/09	11:14	QC	-	AGQCIR-W-17957	2519	6/17/09	Rinsate of decontaminated sampling line after collection of sample AGKMW2-W-17941.
6/16/09	11:26	MW-Q	43.28- 62.78	AGMWQ-W-17949	2519	6/17/09	Depth to water = 39.11 ft. Depth of 2-in. well = 62.78 ft. Sample collected by using low-flow bladder pump after purging of 6 L. Pump intake positioned at 53.03 ft.
6/16/09	12:26	MW-J	56-66	AGMWJ-W-17945	2519	6/17/09	Depth to water = 39.45 ft. Depth of 2-in. well = 66 ft. Sample collected by using low-flow bladder pump after purging of 9.4 L. Pump intake positioned at 61 ft.
6/16/09	13:22	MW-P	35.42- 54.92	AGMWP-W-17948	2519	6/17/09	Depth to water = 38.65 ft. Depth of 2-in. well = 54.92 ft. Sample collected by using low-flow bladder pump after purging of 6 L. Pump intake positioned at 45.78 ft.
6/16/09	13:40	QC	-	AGQCIR-W-17958	2524	6/17/09	Rinsate of decontaminated sampling line after collection of sample AGMWP-W-17948.
6/16/09	14:15	QC	-	AGQCTB-W-17959	2519	6/17/09	Trip blank sent to the AGEM Laboratory for organic analysis with water samples listed on COCs 2519 and 2524.
6/16/09	15:16	PWS-3	65-125	AGPWS3-W-17953	2524	6/17/09	Allowed well to run for 5 min prior to field measurement and sample collection.
TABLE B.1 (Cont.)

Sample Date	Time	Sample Location	Depth (ft BGL)	Sample	Chain of Custody	Shipping Date	Sample Description
6/16/09	16:58	SB23S	49-55	AGSB23S-W-17951	2524	6/17/09	Depth to water = 30.5 ft. Depth of 1 in. well = 55 ft. Sample collected with Waterra pump after purging of 11.32 L (3 well volumes). Pump intake positioned at 52.00 ft.
6/16/09	18:43	SB36	42.7-62.7	AGSB36-W-17952	2524	6/17/09	Depth to water = 37.15 ft. Depth of 4 in. well = 62.7 ft. Sample collected by using low-flow bladder pump after purging of 11.5 L. Pump intake positioned at 52.70 ft.
6/16/09	18:44	SB36	42.7-62.7	AGSB36DUP-W-17956	2524	6/17/09	Replicate of sample AGSB36-W-17952.
6/16/09	20:34	DW98		AGDW98-W-17954	2524	6/17/09	Depth to water = 39.4 ft. Depth of 8 in. well = 59.5 ft. Sample collected by using low-flow bladder pump after purging of 26.5 L. Pump intake positioned at 53 ft.

Location	Sample	Sampling Date	Depth to Water (ft TOC) ^a	Temperature (°C)	рН	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)
GW-1	AGGW1-W-17896	5/20/09	38.75	16.6	7.31	1570	9.54	200
GW-2	AGGW2-W-17806	5/20/09	39.15	17.5	7.31	1313	9.81	195
GW-3	AGGW3-W-17894	5/20/09	39.00	16.8	7.31	1205	9.85	207
GW-4	AGGW4-W-17895	5/20/09	40.10	17.0	7.25	995	10.06	194
GW-5	AGGW5-W-17925	5/20/09	39.05	16.2	7.11	1778	9.28	210
GW-1	Not sampled	6/15/09	39.11	_	_	_	_	_
GW-2	Not sampled	6/15/09	38.95	_	_	_	_	_
GW-3	Not sampled	6/15/09	39.51	_	_	_	_	_
GW-4	Not sampled	6/15/09	39.55	_	_	_	_	_
GW-5	Not sampled	6/15/09	39.23	_	_	_	_	_
KMW02	AGKMW2-W-17941	6/16/09	41.80	19.3	6.96	1144	8.26	143
KMW03	AGKMW3-W-17942	6/16/09	39.47	15.1	7.13	785	5.93	229
MW-C	AGMWC-W-17943	6/15/09	39.00	18.1	7.00	1925	8.39	87
MW-H	AGMWH-W-17944	6/15/09	42.10	16.6	7.02	1802	6.05	49
MW-J	AGMWJ-W-17945	6/16/09	39.45	15.7	7.04	1052	8.25	127
MW-L	AGMWL-W-17946	6/16/09	42.05	15.3	6.92	1133	3.51	212
MW-M	AGMWM-W-17947	6/15/09	42.80	15.9	6.41	898	6.35	135
MW-P	AGMWP-W-17948	6/16/09	38.65	17.3	7.13	1261	7.73	121
MW-Q	AGMWQ-W-17949	6/16/09	39.11	17.9	7.20	750	6.31	170
MW-R	AGMWR-W-17950	6/15/09	39.22	17.1	7.11	806	5.70	188
PWS-3	AGPWS3-W-17953	6/16/09	_	15.2	7.23	861	_	_
SB23S	AGSB23S-W-17951	6/16/09	30.50	14.5	NR ^b	892	7.35	_
SB36	AGSB36-W-17952	6/16/09	37.15	16.7	6.20	975	8.01	111
DW98	AGDW98-W-17954	6/16/09	39.40	14.5	6.82	1142	2.10	74

TABLE B.2 Field measurements made during sitewide monitoring in May-June 2009.

^a Depth is measured in feet below the top of the well casing.

^b NR, not recorded.

Appendix C:

Data from Pace Analytical Services for Wastewater Sample

Pace Analytical*

The Chain-OF-CUD I ODY / ANAIYTICAI REQUEST DOCUMENT. The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information:	Section B Required Project Information:		Section C	~			Page:	1	of	L
Address TCW Construction	Report To: +Kamler (towconstruction . co.	Attention: Travis Ka	mler	7			1	272	137
Muliess 141 M Street	Copy To: Surgnier	e prodigy.net	Company Name: Constr	setion	REGULATO	RY AGEN	CY	· · · · ·		<u> </u>
Lincoln NE 68508		, ,,	Address: M Street	Liecola NE	I NPDES	IX GR			DPINICI	
- + Kanker & + cw construction	Purchase Order No.:		Pace Quote Reference:	68508	IT UST	T RCF	RA			NG WAIER
(402) 416 7255 "ax:	Project Name: Kansas	Waste Water	Pace Project	04	Site Locatio			<u> </u>		
requested Due Date/TAT:	Project Number:		Pace Profile #:		STATE	K	5			
Section D Matrix (odes		<u> </u>	Requested →	Analysis Filt	əréd (Y/N)				
Required Client Information MATRIX /		COLLECTED	Preservatives	NX						* · · ·
Drinking Wat Water Waste Water Waste Water Soll/Solid SAMPLE ID (A-Z, 0-9 /) Sample IDs MUST BE UNIQUE Sample IDs MUST BE UNIQUE Other	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그		# OF CONTAINERS Unpreserved H ₂ SO ₄ HNO ₃ HCI NaOH NaOH NaS2 ₂ O ₃ Methanol Other	Lanalysis Test J COC COCH MM-TYD-HZ			Residual Chlorine (Y/N)	C.	slele F	209
1 AG PUKGE - W - 9 2409	I WWC 1/0	9-240 0800 60	52 2	221			┼┼╞╴	264	e Project N	io./ Lad I.D.
2 BAPURGE - W - 9240	92 WWC 3/0	9 9/09 1115 65	53 2	221		$\left \right $	┿╂╾	40690)	1 2(047) (<u>5830 C.J</u>
3 CIVPUKCE - W - 92409	3 WWC410	9/09 240 71	53 2	221				┠╌┼╌╸		
ALEVE URGE -W-92409	4 WWC4/0	9 9/09 33371	53 2	221						()
5/4K FUKOE-W-42404	5 WWC 4/0	1 9/09 142271	53 2	221					-\$	V OK
- UCIB - W- 12404	6 WIG	9/09/64075	22	2						614
	<u> </u>									
							·			· · · · · · · · · · · · · · · · · · ·
10	╾╴┫┨┨╶┟╌╍			╵┠┼┼┼┦						
11		┼╌╄╤╌┼╴	╶┽┽┞╲┥┥┽							
12		+ + + +	-+							
ADDITIONAL COMMENTS	RELINGUISHED B						\mathbb{N}			
		ITCI I C DATE	IME ACCEPTED	BY / AFFILIATION	DATE	TIME		SAMP	LE CONDITI	ONS
		110 9-24-09	11:00 7	2	9/25	850	4.9	¥	Y	Υ e
	2								· · · ·	
	· · · · · ·				-					
	••••••••••••••••••••••••••••••••••••••	SAMPLER NAME AND SIGNATUR		· · ·						
	ORIGINAL	PRINT Name of SAMPI FR	Travie 12 1					uo pa	e Sode	Intac 1)
	······································	SIGNATURE of SAMPLER	JEVIS Kamler	DATE Signed	3 211	0 a - 0	emp	ecelvi Ice (Y	Cust aled (Signature
·	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			(MM/DD/YY):	1-24-	2009	~	Ϋ́	Š	Sar

Section 10		n opon Kecel	pr	
WWW.pecelebs.com Client Nam	e: tau		Project #	(od.4.709
Courier: 1 Fed Ex UPS USPS Cli Tracking #: <u>5558 7682-9061</u>	ent Commercial	Pace Other		
Custody Seal on Cooler/Box Present:	s 🗌 no Seal	s intact: 🛛 yes	🗌 no	
Packing Material: Bubble Wrap Bubble Thermometer Used 7-19, / T-194	e Bags 🗹 None Type of Ice: We	Other	Samples on ice o	noling process has begun
Cooler Temperature 4.9 Temp should be above freezing to 6°C	Biological Tissue	e is Frozen: Yes Comments:	No Date and Init contents:	ials of person examining
Chain of Custody Present:	ÆYes □No □N#	1.		
Chain of Custody Filled Out:	Øyes 🗛 🗛	2.		
Chain of Custody Relinquished:	ÓYes □No □N/A	3.		
Sampler Name & Signature on COC:	BYes ONO ON/A	4.		
Samples Arrived within Hold Time:	ł∐Yes ⊡No .⊡N/A	5.		
Short Hold Time Analysis (<72hr):	ØYes □No □N/A	6. NO3	•	
Rush Turn Around Time Requested:		7.		
Sufficient Volume:	ØYes □No □N/A	8.		
Correct Containers Used:	ØYes □No □N/A	9.		
-Pace Containers Used:	ETYES EINO ONA			
Containers Intact:	ØYes ⊡No ⊡N/A	10.		
Filtered volume received for Dissolved tests	🛛 Yes 🖉 No 🗍 N/A	11.		
Sample Labels match COC:	ÆYes □No □N/A	12.		
-Includes date/time/ID/Analysis Matrix:	NT	ALL SAMPLY	ES COLLECTERS al	4 ALLORDANCE TO
All containers needing preservation have been checked.	□Yes □No ØN/A	13. LABELS		•
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No ØN/A			
exceptions: 10, coliform, TOC, O&G, WI-DRO (water)	ØYes □No	Initial when completed	Lot # of added preservative	
Samples checked for dechlorination:	□Yes □No ZN/A	14.		
leadspace in VOA Vials (>6mm):	□Yes 21No □N/A	15.		
Trip Blank Present:	⊠Yes □No □N/A	16.		
Trip Blank Custody Seals Present	ØYes □No □N/A			
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution: Cop	y COC to Client?	Y / N	Field Data Require	ed? Y/N
Person Contacted: Trawis Ka	mler Date	Time: 9-23	5.09	
Comments/ Resolution: Per allent	all san	nples co	letted or	, 9-24-09.J
			·····	
		• • • • • • • • • • • • • • • • • • •		·
Project Manager Review:	9-28-09		Date:	

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

SAMPLE ACKNOWLEDGMENT

 Samples Submitted By:
 TCW Construction Inc.
 Pace Project Manager:
 Trudy Gipson

 Client Project ID:
 Kansas Waste Water
 Prone 1(913)563-1405
 trudy.gipson@pacelabs.com

 Client PO#:
 Credit Card
 Pace Analytical Project ID:
 6066709

 Samples Received:
 September 25, 2009
 September 25, 2009

Customer Sample ID	Pace Analytical Lab ID	Matrix	Date/Time Collected	Method
AGPURGE-W-924091	6066709001	Water	09/24/09 08:00	
	A second second			504 GCS EDB and DBCP
				8260 MSV
BAPURGE-W-924092	6066709002	Water	09/24/09 11:15	300.0 IC Anions
· · · · · · · · · · · · · · · · · · ·				504 GCS EDB and DBCP
			1	8260 MSV
CNPURGE-W-924093	6066709003	Water	09/24/09 12:40	300.0 IC Anions
	in the second			504 GCS EDB and DBCP
				8260 MSV
EUPURGE-W-924094	6066709004	Water	09/24/09 13:33	300.0 IC Anions
		· · · · ·		504 GCS EDB and DBCP
		· · · ·		8260 MSV
MRPURGE-W-924095	6066709005	Water	09/24/09 14:22	300.0 IC Anions
				504 GCS EDB and DBCP
				8260 MSV
QCTB-W-924096	6066709006	Water	09/24/09 16:40	8260 MSV

Please contact your project manager if you recognize any discrepancy in this form or have any questions about your project. Thank you for choosing Pace Analytical Services, Inc.

October 13, 2009

Mr. Travis Kamler TCW Construction Inc 141 M Street Lincoln, NE 68508

RE: Project: Kansas Waste Water Pace Project No.: 6066709

Dear Mr. Kamler:

Enclosed are the analytical results for sample(s) received by the laboratory on September 25, 2009. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sundy Sipson

Trudy Gipson

trudy.gipson@pacelabs.com Project Manager

Enclosures

cc: Mr. David Surgnier

REPORT OF LABORATORY ANALYSIS

Page 1 of 23

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

CERTIFICATIONS

Project: Kansas Waste Water Pace Project No.: 6066709

Kansas Certification IDs Washington Certification #: C2069 Utah Certification #: 9135995665 Texas Certification #: T104704407-08-TX Oregon Certification #: KS200001 Oklahoma Certification #: 9205/9935 Nevada Certification #: KS000212008A

Louisiana Certification #: 03055 Kansas/NELAP Certification #: E-10116 Iowa Certification #: 118 Illinois Certification #: 001191 Arkansas Certification #: 05-008-0 A2LA Certification #: 2456.01

REPORT OF LABORATORY ANALYSIS

Page 2 of 23

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

SAMPLE SUMMARY

Project: Pace Project N	Kansas Waste Water o.: 6066709	•					
Lab ID	Sample ID		· · ·	Matrix	Date Collected	Date Received	a de la
6066709001	AGPURGE-W-924091			Water	09/24/09 08:00	09/25/09 08:50	
6066709002	BAPURGE-W-924092			Water	09/24/09 11:15	09/25/09 08:50	•
6066709003	CNPURGE-W-924093			Water	09/ 24 /09 12:40	09/25/09 08:50	
6066709004	EUPURGE-W-924094			Water	09/24/09 13:33	09/25/09 08:50	
6066709005	MRPURGE-W-924095		•	Water	09/24/09 14:22	09/25/09 08:50	
6066709006	QCTB-W-924096		•	Water	09/24/09 16:40	09/25/09 08:50	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 3 of 23

SAMPLE ANALYTE COUNT

Project: Kansas Waste Water Pace Project No.: 6066709

Lab ID	Sample ID	Method	Analysts	Analytes Reported
6066709001		EPA 300.0	RAB	1
		EPA 5030B/8260	NPM	70
		EPA 504.1	WAW	1
6066709002	BAPURGE-W-924092	EPA 300.0	RAB	1
		EPA 5030B/8260	NPM	70
		EPA 504.1	WAW	1
6066709003	CNPURGE-W-924093	EPA 300.0	RAB	1
		EPA 5030B/8260	NPM	70
		EPA 504.1	WAW	1
6066709004	EUPURGE-W-924094	EPA 300.0	RAB	1
		EPA 5030B/8260	NPM	70
		EPA 504.1	WAW	1
6066709005	MRPURGE-W-924095	EPA 300.0	RAB	1
		EPA 5030B/8260	NPM	70
		EPA 504.1	WAW	1
6066709006	QCTB-W-924096	EPA 5030B/8260	NPM	70

REPORT OF LABORATORY ANALYSIS

Page 4 of 23

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

Sample: AGPURGE-W-924091	Lab ID: 6066709001	Collected: 09/24/09 08	00 Received: 09	9/25/09 08:50 Matrix: Water	
Parameters	Results Units	Report Limit DF	Prepared	Analyzed CAS No.	
504 GCS EDB and DBCP	Analytical Method: EPA 5	04.1 Preparation Method:	EPA 504.1		
1,2-Dibromoethane (EDB)	ND ug/L	0.047 1	10/08/09 00:00	10/10/09 03:27 106-93-4	
8260 MSV	Analytical Method: EPA 5	030B/8260			•
Acetone	ND ug/L	10.0 1		09/28/09 21:07 67-64-1	•
Benzene	ND ug/L	1.0 1	•	09/28/09 21:07 71-43-2	
Bromobenzene	ND ug/L	1.0 1		09/28/09 21:07 108-86-1	. •
Bromochloromethane	ND ug/L	1.0 1		09/28/09 21:07 74-97-5	
Bromodichloromethane	ND ug/L	1.0 1		09/28/09 21:07 75-27-4	
Bromoform	ND ua/L	1.0 1		09/28/09 21:07 75-25-2	+
Bromomethane	ND ua/L	1.0 1	1	09/28/09 21:07 74-83-9	
P-Butanone (MEK)	ND ua/L	10.0 1	·	09/28/09 21:07 78-93-3	
n-Butvibenzene	ND ua/L	1.0 1		09/28/09 21:07 104-51-8	×.?
ec-Butylbenzene	ND ug/L	10 1	· · ·	09/28/09 21:07 135-98-8	•
ert-Butvibenzene		10 1		09/28/09 21:07 98-06-6	
Carbon disulfide		50 1		09/28/09 21:07 75-15-0	
arbon tetrachloride		10 1		00/28/00 21:07 56-23-5	
blombenzene		1.0 1		00/20/00 21:07 108:00.7	
bloroothana		1.0 1		00/20/09 21:07 75 00 2	
bloroform		1.0 1	•	09/28/09 21:07 75-00-3	
historiation		1.0 1		09/28/09 21:07 87-80-3	
Oblesstellung	ND Ug/L	1.0 1		09/28/09 21:07 74-87-3	
	ND ug/L	1.0 1		09/28/09 21:07 95-49-8	
Chlorotoluene	NL) Ug/L	1.0 1		09/28/09 21:07 106-43-4	
2-Dibromo-3-chloropropane	ND ug/L	2.5 1	· · · · · · · · ·	09/28/09 21:07 96-12-8	
ibromochloromethane	ND ug/L	1.0 1	· · ·	09/28/09 21:07 124-48-1	
2-Dibromoethane (EDB)	ND ug/L	1.0 1		09/28/09 21:07 106-93-4	
ibromomethane	ND ug/L	1.0 1		09/28/09 21:07 74-95-3	
2-Dichlorobenzene	ND ug/L	1.0 1		09/28/09 21:07 95-50-1	. :
3-Dichlorobenzene	ND ug/L	1.0 1		09/28/09 21:07 541-73-1	. •
4-Dichlorobenzene	ND ug/L	1.0 1		09/28/09 21:07 106-46-7	
ichlorodifluoromethane	ND ug/L	1.0 1	· · · ·	09/28/09 21:07 75-71-8	
,1-Dichloroethane	ND ug/L	1.0 1	the first of	09/28/09 21:07 75-34-3	
,2-Dichloroethane	ND ug/L	1.0 1		09/28/09 21:07 107-06-2	· .
2-Dichloroethene (Total)	ND ug/L	1.0 1		09/28/09 21:07 540-59-0	•
,1-Dichloroethene	ND ug/L	1.0 1		09/28/09 21:07 75-35-4	• •
s-1,2-Dichloroethene	ND ug/L	1.0 1	•	09/28/09 21:07 156-59-2	
ans-1,2-Dichloroethene	ND ua/L	1.0 1	·	09/28/09 21:07 156-60-5	
2-Dichloropropane	ND ua/L	1.0 1		09/28/09 21:07 78-87-5	
3-Dichloropropane	ND ug/l	10 1		09/28/09 21:07 142-28-9	
2-Dichloropropane	ND ug/L	10 1		09/28/09 21:07 594-20-7	
1-Dichloropropene		10 1		00/28/00 21:07 563-58-6	· •
s-1 3-Dichloropropene		1.0 1		00/28/00 21:07 10061:01-5	
ans-1 3-Dichioropropono		1.0 1		00/28/00 21:07 10001-01-0	
ano-1,0-Dialioroproperie		1.0 1		00/20/09 21:07 10001-02-0	
		1.0 1		00/00/00 01:07 07 00 0	
		1.0 1		09/28/09 21:07 87-68-3	•
	ND Ug/L	10.0 1		09/28/09 21:07 591-78-6	
opropyidenzene (Cumene)	NU Ug/L	1.0 1		09/28/09 21:07 98-82-8	·
-isopropyitoluene	ND ug/L	1.0 1		09/28/09 21:07 99-87-6	

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 5 of 23

ANALYTICAL RESULTS

Project: Kansas Waste Water

Pace Project No.: 6066709

Sample: AGPURGE-W-924091	Lab ID: 6066709001	Collected: 09/24/09 08:00	Received: 09/25/09 08:50	Matrix: Water
Parameters	Results Units	Report Limit DF	Prepared Analyzed	CAS No. Qual
8260 MSV	Analytical Method: EPA 50	030B/8260		
Methylene chloride	ND ug/L	1.0 1	09/28/09 21:0)7 75-09-2
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0 1	09/28/09 21:0	07 108-10-1
Methyl-tert-butyl ether	ND ug/L	1.0 1	09/28/09 21:0	07 1634-04-4
Naphthalene	ND ug/L	10.0 1	09/28/09 21:0)7 91-20-3
n-Propylbenzene	ND ug/L	1.0 1	09/28/09 21:0	07 103-65-1
Styrene	ND ug/L	1.0 1	09/28/09 21:0)7 100-42-5
1,1,1,2-Tetrachloroethane	ND ug/L	1.0 1	09/28/09 21:0	07 630-20-6
1,1,2,2-Tetrachloroethane	ND ug/L	1.0 1	09/28/09 21:0)7 7 9 -34-5
Tetrachloroethene	ND ug/L	1.0 1	09/28/09 21:0)7 127-18-4
Toluene	ND ug/L	1.0 1	09/28/09 21:0)7 108-88-3
1,2,3-Trichlorobenzene	ND ug/L	1.0 1	09/28/09 21:0	7 87-61-6
1,2,4-Trichlorobenzene	ND ug/L	1.0 1	09/28/09 21:0	07 120-82-1
1,1,1-Trichloroethane	ND ug/L	1.0 1	09/28/09 21:0)7 71-55-6
1,1,2-Trichloroethane	ND ug/L	1.0 1	09/28/09 21:0)7 79-00-5
Trichloroethene	ND ug/L	1.0 1	09/28/09 21:)7 79-01-6
Trichlorofluoromethane	ND ug/L	1.0 1	09/28/09 21:)7 75-69-4
1,2,3-Trichloropropane	ND ug/L	2.5 1	09/28/09 21:)7 96-18-4
1,2,4-Trimethylbenzene	ND ug/L	1.0 1	09/28/09 21:)7 95-63-6
1.3,5-Trimethylbenzene	ND ug/L	1.0 1	09/28/09 21:0	07 108-67-8
Vinyl chloride	ND ug/L	1.0 1	09/28/09 21:)7 75-01-4
Xylene (Total)	ND ug/L	3.0 1	09/28/09 21:0	07 1330-20-7
4-Bromofluorobenzene (S)	102 %	87-115 1	09/28/09 21:0	7 460-00-4
Dibromofluoromethane (S)	108 %	87-113 1	09/28/09 21:0	07 1868-53-7
1,2-Dichloroethane-d4 (S)	110 %	81-121 1	09/28/09 21:0	07 17060-07-0
Toluene-d8 (S)	107 %	89-111 1	09/28/09 21:0)7 2037-26-5
Preservation pH	7.0	0.10 1	09/28/09 21:0)7
300.0 IC Anions	Analytical Method: EPA 30	0.0		
Nitrate as N	3.4 mg/L	0.10 1	09/26/09 03:	86 14797-55-8
 A state of the sta	and the second second second second		the second s	

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 23

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc...

Qual

ANALYTICAL RESULTS

Sample: QCTB-W-924096	Lab ID:	60667(9006	Collected:	09/24/0	09 16:40	Received:	09/25/09 08:50	Matrix: Water
Parameters	Results	•	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.
8260 MSV	Analytical	Method	: EPA 5030)B/8260	• . •			•	
Acetone	15.4	lug/L			10.0	1		09/28/09 22:2	3 67-64-1
Benzene	NC	ug/L	•		1.0	1	•	09/28/09 22:2	3 71-43-2
Bromobenzene	NE	ug/L	•		1.0	1		09/28/09 22:2	3 108-86-1
Bromochloromethane	NE	ug/L			1.0	1	· · ·	09/28/09 22:2	3 74-97-5
Bromodichloromethane	NC	ug/L			1.0	1		09/28/09 22:2	3 75-27-4
Bromoform	NE	ug/L	1 · ·	et a fr	1.0	1		09/28/09 22:2	3 75-25-2
Bromomethane	ND	ug/L			1.0	1		09/28/09 22:2	3 74-83-9
2-Butanone (MEK)	ND	ug/L	•		10.0	1		09/28/09 22:2	3 78-93-3
n-Butylbenzene	ND	ug/L			1.0	1		09/28/09 22:2	3 104-51-8
sec-Butylbenzene	ND	ug/L		et 1. j	1.0	1		09/28/09 22:2	3 135-98-8
tert-Butylbenzene	ND	ug/L	- 19 A		1.0	1		09/28/09 22:2	3 98-06-6
Carbon disulfide	ND	ug/L			5.0	1		09/28/09 22:2	3 75-15-0
Carbon tetrachloride	ND	ug/L			1.0	1		09/28/09 22:2	3 56-23-5
Chlorobenzene	ND	ug/L			1.0	1		09/28/09 22:2	3 108-90-7
Chloroethane	ND	ug/L	· · ·		1.0	1		09/28/09 22:2	3 75-00-3
Chloroform	ND	ug/L	·		1.0	. 1		09/28/09 22:2	3 67-66-3
Chloromethane	ND	ug/L		. t	1.0	1		09/28/09 22:2	3 74-87-3
2-Chlorotoluene	ND	ug/L	1997 - A. 1		1.0	1		09/28/09 22:2	3 95-49-8
4-Chlorotoluene	ND	uq/L	1		1.0	1		09/28/09 22:2	3 106-43-4
1,2-Dibromo-3-chloropropane	ND	ug/L	· · ·	11 e - E	2.5	1		09/28/09 22:2	3 96-12-8
Dibromochloromethane	ND	uq/L			1.0	1		09/28/09 22:2	3 124-48-1
1,2-Dibromoethane (EDB)	ND	ug/L			1.0	1		09/28/09 22:2	3 106-93-4
Dibromomethane	ND	ug/L		 	1.0	1	• • •	09/28/09 22:2	3 74-95-3
1,2-Dichlorobenzene	ND	ug/L		• • •	1.0	1		09/28/09 22:2	3 95-50-1
1,3-Dichlorobenzene	ND	ug/L			1.0	1	· · ·	09/28/09 22:2	3 541-73-1
1,4-Dichlorobenzene	ND	uq/L		111	1.0	1		09/28/09 22:2	3 106-46-7
Dichlorodifluoromethane	ND	ug/L	·		1.0	1		09/28/09 22:2	3 75-71-8
1,1-Dichloroethane	ND	ug/L			1.0	ì		09/28/09 22:2	3 75-34-3
1,2-Dichloroethane	ND	ug/L	· · ·		1.0	1		09/28/09 22:2	3 107-06-2
1,2-Dichloroethene (Total)	ND	ug/L	a.a. 1.	1	1.0	1		09/28/09 22 2	3 540-59-0
1,1-Dichloroethene	ND	ug/L			1.0	1 .		09/28/09 22:2:	3 75-35-4
cis-1,2-Dichloroethene	ND	ug/L			1.0	1		09/28/09 22:2	3 156-59-2
trans-1.2-Dichloroethene	ND	ng/l			10	4		00/28/00 22:2	3 156-60-5

ND ug/L

Date: 10/13/2009 03:25 PM

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

Ethylbenzene

2-Hexanone

p-Isopropyltoluene

Methylene chloride

Methyl-tert-butyl ether

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Hexachloro-1,3-butadiene

Isopropylbenzene (Cumene)

4-Methyl-2-pentanone (MIBK)

REPORT OF LABORATORY ANALYSIS

1

1

1

1

1

1

1

1

1

1

1

1

1

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

10.0

1.0

1.0

1.0

10.0

1.0

Page 15 of 23

09/28/09 22:23 78-87-5

09/28/09 22:23 142-28-9

09/28/09 22:23 594-20-7

09/28/09 22:23 563-58-6

09/28/09 22:23 87-68-3

09/28/09 22:23 591-78-6

09/28/09 22:23 98-82-8

09/28/09 22:23 99-87-6

09/28/09 22:23 75-09-2

09/28/09 22:23 108-10-1

09/28/09 22:23 1634-04-4

10061-01-5

10061-02-6

100-41-4

09/28/09 22:23

09/28/09 22:23

09/28/09 22:23

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc

nelac

ANALYTICAL RESULTS

Project: Kansas Waste Water

Pace	Project No .:	6066709

Sample: QCTB-W-924096	Lab ID: 6066	709006	Collected: 09/2	24/09 16:40	Received:	09/25/09 08:50 N	Matrix: Water	
Parameters	Results	Units	Report Lim	it DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Meth	od: EPA 50	30B/8260		•			
Naphthalene	ND ug/	L	10	.0 1		09/28/09 22:23	91-20-3	
n-Propylbenzene	ND ug/	Ľ, .	1	.0 1		09/28/09 22:23	103-65-1	
Styrene	ND ug/	L ^a la la l	1	.0 1	• • •	09/28/09 22:23	100-42-5	·
1,1,1,2-Tetrachloroethane	ND ug/	<u>E</u>	1	.0 1		09/28/09 22:23	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/	-	. 1	.0 1	tin an	09/28/09 22:23	79-34-5	
Tetrachloroethene	ND ug/	-	1	.0 1	•	09/28/09 22:23	127-18-4	
Toluene	ND ug/	-	1	.0 1	• • • •	09/28/09 22:23	108-88-3	.*
1,2,3-Trichlorobenzene	ND ug/l	-	1	.0 1		09/28/09 22:23	87-61-6	· · ·
1,2,4-Trichlorobenzene	ND ug/l	_	1	.0 1		09/28/09 22:23	120-82-1	
1,1,1-Trichloroethane	ND ug/	_	1	.0 1		09/28/09 22:23	71-55-6	
1,1,2-Trichloroethane	ND ug/	_	1	.0 1	· · · · ·	09/28/09 22:23	79-00-5	
Trichloroethene	ND ug/l	-	1	.0 1		09/28/09 22:23	79-01-6	
Trichlorofluoromethane	ND ug/l	- ·	1	.0 1	· · ·	09/28/09 22:23	75-69-4	
1,2,3-Trichloropropane	ND ug/l	-	2	5. 1		09/28/09 22:23	96-18-4	
1,2,4-Trimethylbenzene	ND ug/l	<u> </u>	1	.0 1	1.14.	09/28/09 22:23	95-63-6	
1,3,5-Trimethylbenzene	ND ug/l		1	.0 1		09/28/09 22:23	108-67-8	
Vinyl chloride	ND ug/l	-	1	0 1	r e l'ag	09/28/09 22:23	75-01-4	•
Xylene (Total)	ND ug/l	-	3	0 1		09/28/09 22:23	1330-20-7	
4-Bromofluorobenzene (S)	103 %		87-11	5 1		09/28/09 22 23	460-00-4	
Dibromofluoromethane (S)	107 %		87-11	3 1	· •••	09/28/09 22:23	1868-53-7	
1,2-Dichloroethane-d4 (S)	109 %	•	81-12	1 1		09/28/09 22:23	17060-07-0	
Toluene-d8 (S)	107 %	•	89-11	1 1		09/28/09 22:23	2037-26-5	Argen (
Preservation pH	7.0		0.1	0 1	en a la composición de	09/28/09 22:23	2007 200	
							4.00	

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

Page 16 of 23

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

QC Batch: WETA/10995 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions Associated Lab Samples: 6066709001, 6066709002, 6066709003, 6066709004, 6066709005 Matrix: Water Associated Lab Samples: 6066709001, 6066709002, 6066709003, 6066709004, 6066709005 Matrix: Water Associated Lab Samples: 6066709001, 6066709002, 6066709003, 6066709004, 6066709005 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Nitrate as N mg/L ND 0.10 09/25/09 21:46 LABORATORY CONTROL SAMPLE: 541950 Spike LCS LCS % Rec % %	
QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions Associated Lab Samples: 6066709001, 6066709002, 6066709003, 6066709004, 6066709005 Matrix: Water METHOD BLANK: 541949 Matrix: Water Associated Lab Samples: 6066709001, 6066709002, 6066709003, 6066709004, 6066709005 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Nitrate as N mg/L ND 0.10 09/25/09 21:46 LABORATORY CONTROL SAMPLE: 541950	
Associated Lab Samples: 6066709001, 6066709002, 6066709003, 6066709004, 6066709005 METHOD BLANK: 541949 Associated Lab Samples: 6066709001, 6066709002, 6066709003, 6066709004, 6066709005 Blank Reporting Parameter Units Result Nitrate as N mg/L ND 0.10 09/25/09 21:46 LABORATORY CONTROL SAMPLE: 541950 Spike LCS ½ Rec	
METHOD BLANK: 541949 Matrix: Water Associated Lab Samples: 6066709001, 6066709002, 6066709003, 6066709005 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Nitrate as N mg/L ND 0.10 09/25/09 21:46 LABORATORY CONTROL SAMPLE: 541950 Spike LCS % Rec	
Associated Lab Samples: 6066709001, 6066709002, 6066709003, 6066709004, 6066709005 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Nitrate as N mg/L ND 0.10 09/25/09 21:46 Imit Imit	
Parameter Units Blank Result Reporting Limit Analyzed Qualifiers Nitrate as N mg/L ND 0.10 09/25/09 21:46 LABORATORY CONTROL SAMPLE: 541950 Spike LCS % Rec	
Nitrate as N mg/L ND 0.10 09/25/09 21:46 LABORATORY CONTROL SAMPLE: 541950 Spike LCS % Rec	
LABORATORY CONTROL SAMPLE: 541950 Spike LCS LCS % Rec	
Spike LCS LCS % Rec	
Parameter Units Conc. Result % Rec Limits Qualifiers	
Nitrate as N mg/L 5 4.9 97 90-110	
MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 541951 541952	
MS MSD	
6066657003 Spike Spike MS MSD MS MSD % Rec M Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD F	∕lax ₹PD Qual
Nitrate as N mg/L 2.5 5 5.7 5.7 65 64 73-114 0	5 M0
MATRIX SPIKE SAMPLE: 542080	
6066707001 Spike MS MS % Rec	
Parameter Units Result Conc. Result % Rec Limits C	
Nitrate as N mg/L 0.21 5 4.8 92 73-114	Jualifiers

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

Page 17 of 23

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc...

QUALITY CONTROL DATA

Project: Kansas Waste Pace Project No.: 6066709	Water				
OC Batch MSV/23759	·	Analysis Method:	EDA 6	0308/8260	
OC Batch Method: EPA 5030B/8	260	Analysis Meulou.		MS\/ Motor 7 do	
			3011. 02001		y
Associated Lab Samples: 606670	9001, 6066709002, 6	066709003, 60667090	004, 606670900	05, 6066709006	
METHOD BLANK: 548226		Matrix: Wat	er		
Associated Lab Samples: 606670	9001, 6066709002, 6	066709003, 60667090	04. 606670900	05.6066709006	
		Blank R	eportina		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0 09	/28/09 20:06	
1,1,1-Trichloroethane	ug/L	ND	1.0 09	/28/09 20:06	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0 09	/28/09 20:06	
1,1,2-Trichloroethane	ug/L	ND	1.0 09	/28/09 20:06	
1,1-Dichloroethane	ug/L	ND	1.0 09	/28/09 20:06	
1,1-Dichloroethene	ug/L	ND	1.0 09	/28/09 20:06	
1,1-Dichloropropene	ug/L	ND	1.0 09	/28/09 20:06	
1,2,3-Trichlorobenzene	ug/L	ND	1.0 09	/28/09 20:06	
1,2,3-Trichloropropane	ug/L	ND	2.5 09	/28/09 20:06	
1,2,4-Trichlorobenzene	ug/L	ND	1.0 09	/28/09 20:06	
1,2,4-Trimethylbenzene	ug/L	ND	1.0 09	/28/09 20:06	
1,2-Dibromo-3-chloropropane	ug/L	ND	2.5 09	/28/09 20:06	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0 09	/28/09 20:06	
1,2-Dichlorobenzene	ug/L	ND	1.0 09	/28/09 20:06	
1,2-Dichloroethane	ug/L	ND	1.0 09	/28/09 20:06	
1,2-Dichloroethene (Total)	ug/L	ND	1.0 09	/28/09 20:06	
	ug/L		1.0 09	28/09 20:06	
1.3.0-mineuryidenzene	ug/L ug/l		1.0 09	20/09 20.00	
1.3-Dichloropropage	ug/L		1.0 09	20/09 20:00	
1.4-Dichlorobenzene	ug/L		1.0 09	20/09 20.00	
2 2-Dichloropropane	ug/L		1.0 09	/28/09 20:00	
2-Butanone (MEK)	ug/L	ND	10.0 09	20/09 20:00	
2-Chlorotoluene	ug/L	ND	10.0 03	/28/09 20:00	
2-Hexanone	ug/L	ND	10.0 09	/28/09 20:06	
4-Chlorotoluene	ug/L	ND	1.0 09	/28/09 20:06	
4-Methyl-2-pentanone (MIBK)	ua/L	ND	10.0 09	/28/09 20:06	
Acetone	ua/L	ND	10.0 09	/28/09 20:06	
Benzene	ug/L	ND	1.0 09	/28/09 20:06	
Bromobenzene	ug/L	ND	1.0 09	/28/09 20:06	
Bromochloromethane	ug/L	ND	1.0 09	/28/09 20:06	
Bromodichloromethane	ug/L	ND	1.0 09	/28/09 20:06	
Bromoform	ug/L	ND	1.0 09	/28/09 20:06	
Bromomethane	ug/L	ND	1.0 09	/28/09 20:06	
Carbon disulfide	ug/L	ND	5.0 09	/28/09 20:06	<u> </u>
Carbon tetrachlonde	ug/L	ND	1.0 09	/28/09 20:06	
Chlorobenzene	ug/L	ND	1.0 09	/28/09 20:06	
Chloroethane	ug/L	ND	1.0 09	/28/09 20:06	
Chloroform	ug/L	ND	1.0 09	/28/09 20:06	
Chloromethane	ug/L	ND	1.0 09	/28/09 20:06	
cis-1,2-Dichloroethene	ug/L	ND	1.0 09	/28/09 20:06	
cis-1,3-Dichloropropene	ug/L	ND	1.0 09/	/28/09 20:06	
Dibromochloromethane	ug/L	ND	1.0 09/	/28/09 20:06	

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project: Pace Project No.:

o.: 6066709

Kansas Waste Water

METHOD BL	ANK:	548226	•	÷		Matrix: Water	
							•

Associated Lab Samples: 6066709001, 6066709002, 6066709003, 6066709004, 6066709005, 6066709006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Dibromomethane	ug/L	ND	1.0	09/28/09 20:06	
Dichlorodifluoromethane	ug/L	ND	1.0	09/28/09 20:06	
Ethylbenzene	ug/L	ND	1.0	09/28/09 20:06	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	09/28/09 20:06	1
Isopropylbenzene (Cumene)	ug/L	ND	1.0	09/28/09 20:06	
Methyl-tert-butyl ether	ug/L	ND	1.0	09/28/09 20:06	
Methylene chloride	ug/L	ND	1.0	09/28/09 20:06	
n-Butylbenzene	ug/L	ND	1.0	09/28/09 20:06	
n-Propylbenzene	ug/L	ND	1.0	09/28/09 20:06	
Naphthalene	ug/L	ND	10.0	09/28/09 20:06	
p-Isopropyitoluene	ug/L	ND	1.0	09/28/09 20:06	1
sec-Butylbenzene	ug/L	ND	1.0	09/28/09 20:06	
Styrene	ug/L	ND	1.0	09/28/09 20:06	
tert-Butylbenzene	ug/L	ND	1.0	09/28/09 20:06	
Tetrachloroethene	ug/L	ND	1.0	09/28/09 20:06	
Toluene	ug/L	ND	1.0	09/28/09 20:06	
trans-1,2-Dichloroethene	ug/L	ND	1.0	09/28/09 20:06	
trans-1,3-Dichloropropene	ug/L	ND	1.0	09/28/09 20:06	
Trichloroethene	ug/L	ND	1.0	09/28/09 20:06	
Trichlorofluoromethane	ug/L	ND	1.0	09/28/09 20:06	
Vinyi chloride	ug/L	ND	1.0	09/28/09 20:06	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Xylene (Total)	ug/L	ND	3.0	09/28/09 20:06	
1,2-Dichloroethane-d4 (S)	%	105	81-121	09/28/09 20:06	
4-Bromofluorobenzene (S)	%	102	87-115	09/28/09 20:06	
Dibromofluoromethane (S)	%	104	87-113	09/28/09 20:06	
Toluene-d8 (S)	%	106	89-111	09/28/09 20:06	

LABORATORY CONTROL SAMPLE: 548227

Parameter	···· ·	Units		Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	•		10	7.6	76	75-121	· · · ·
1,1,1-Trichloroethane	ug/L			10	8.8	88	73-120	
1,1,2,2-Tetrachloroethane	ug/L	i da		10	10	100	73-128	
1,1,2-Trichloroethane	ug/L			10	10.4	104	83-125	
1,1-Dichloroethane	ug/L			10	9.8	98	79-115	a de la composición d
1,1-Dichloroethene	ug/L		ant 了	10	10.2	102	76-122	
1,1-Dichloropropene	ug/L			10	10.5	105	80-119	
1,2,3-Trichlorobenzene	ug/L	· •		10	9.5	95	70-138	
1,2,3-Trichloropropane	ug/L			10	10.3	103	74-129	
1,2,4-Trichiorobenzene	ug/L		1	10	9.0	90	72-131	
1,2,4-Trimethylbenzene	ug/L	. •		10	9.2	92	78-123	
1,2-Dibromo-3-chloropropane	ug/L			.10	8.9		61-139	
1,2-Dibromoethane (EDB)	ug/L		1.1	10	10	100	80-124	
1,2-Dichlorobenzene	ug/L			10	9.4	94	82-113	
1.2-Dichloroethane	ua/L	· · ·		10	10.9	109	78-118	

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

Page 19 of 23

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

QUALITY CONTROL DATA

Project: Kansas Waste Water

Pace Project No.: 6066709

LABORATORY CONTROL SAMPLE: 548227

Parameter		Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethene (Total)	ug/L		20	21.5	107	79-120	
1,2-Dichloropropane	ug/L	1	10	10.9	109	83-117	n
1,3,5-Trimethylbenzene	ug/L		10	9.3	93	79-116	ter to se
1,3-Dichlorobenzene	ug/L		10	9.1	91	82-112	• 5.4
1,3-Dichloropropane	ug/L		10	10.4	104	82-121	
1,4-Dichlorobenzene	ug/L	· · · · · ·	10	9.1	91	81-111	
2,2-Dichloropropane	ug/L	· .	10	6.3	63	55-139	
2-Butanone (MEK)	ug/L	1	25	29.6	119	61-136	
2-Chlorotoluene	ug/L		10	9.1	91	81-115	
2-Hexanone	ug/L		25	27.8	111	65-137	e e e
4-Chlorotoluene	ug/L		. 10 .	9.2	92	81-111	
4-Methyl-2-pentanone (MIBK)	ug/L		25	32.1	129	65-133	
Acetone	ug/L		25	27.7	111	58-126	1
Benzene	ug/L		10	10.8	108	81-114	
Bromobenzene	ug/L		10	9.3	93	84-113	
Bromochloromethane	ua/L		10	11.2	112	79-120	
Bromodichloromethane	ua/L		10	10.0	100	75-119	5. + · · ·
Bromoform	ua/L		10	6.8	83	66-132	
Bromomethane	ua/L		10	5.8	58	58-151	
Carbon disulfide	ug/L		10	10.0	109	10-1/18	
Carbon tetrachlonde	ua/L		10	74	74	62-127	
Chlorobenzene	ua/l	· · · · ·	10	00	00	91 112	
Chloroethane	ua/l		10	12.4	124	65 110	2
Chloroform	ua/l		10	12.4	124	00-119 L 76 110	
Chloromethane	ug/l	· · · · · ·	10	0.4	06	40 122	
cis-1.2-Dichloroethene	ug/L	1	10	10.9	109	40-132	
cis-1.3-Dichloropropene	ug/L		10	10.8	100	00-119	
Dibromochloromethane	ug/L		10	9.0	95	70-122	
Dibromomethane	ug/L		10	0.4	. 04	72-124	
Dichlorodifluoromethane	ug/L		10	0.1	110	79-121	
Ethylbenzene	ug/L		10	0.1	81	11-156	
Heyachloro-1 3-hutadiene	ug/L	la anti-	10	9.6	96	82-115	1. S.
	ug/∟ va/l		10	8.3	83	72-139	
Methyl tort but dather	ug/∟	• • •	10	8.4	84	69-103	
Mothylono oblorido	ug/L		10	9.4	94	65-113	
	ug/∟		10	10.0	100	76-124	
n-Butyiberizene	ug/∟		10	9.1	91	77-121	
Nanhthalono	ug/L	• •	10	8.9	89	79-116	
napriulaiene	ug/L		10	10.6	106	66-132	
p-isopropyiloidene	ug/L		10	8.8	88	77-114	
Sec-bulyidenzene	ug/L		10	9.1	91	80-119	
Styrene	ug/L	t part a	10	10.1	101	81-115	•
	ug/L		10	9.2	92	77-121	
Teluene	ug/L		10	9.2	92	73-122	
	ug/L		10	10.6	106	82-114	
trans-1,2-Dichloroethene	ug/L	· · · ·	10	10.7	107	, 75-122	$(-1,-1) \in \mathbb{Z}$
trans-1,3-Dicnioropropene	ug/L		10	6.5	65	66-114 L	2
Inchioroethene	ug/L	1	10	10.6	106	78-119	
Inchiorofluoromethane	ug/L		10	9.7	97	71-120	

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

Page 20 of 23

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project: Kansas Waste Water 6066709

Pace Project No .:

LABORATORY CONTROL SAMPLE:	BORATORY CONTROL SAMPLE: 548227								
Parameter		Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers		
Vinyl chloride	ug/L		10	9.2	92	67-139			
Xylene (Total)	ug/L		30	26.9	90	81-116			
1,2-Dichloroethane-d4 (S)	%			a star in	104	81-121			
4-Bromofluorobenzene (S)	%		19 - ¹⁴ - 1		101	87-115			
Dibromofluoromethane (S)	%				105	87-113			
Toluene-d8 (S)	%				105	89-111			

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

Page 21 of 23

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project: Kansas Waste Water Pace Project No.: 6066709

QC Batch: OEX	T/19948	Analysis Method:	EP/	A 504.1		······
QC Batch Method: EPA	504.1	Analysis Descript	ion: GC	S 504 EDB DBC	Р	
Associated Lab Samples:	6066709001, 6066709002, 60	066709003, 60667090	04, 606670	9005		
METHOD BLANK: 54883	0	Matrix: Wat	er			
Associated Lab Samples:	6066709001, 6066709002, 60	066709003, 60667090	04, 6066709	9005		а. С
		Blank Re	eporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
1,2-Dibromoethane (EDB)	ug/L	ND	0.050	10/09/09 15:13		
				• • •		
LABORATORY CONTROL	SAMPLE & LCSD: 548831	5	48832	······································		
Parameter	Units	Spike LCS Conc. Result	LCSD Result	LCS LCSD %Rec %Rec	% Rec Limits RPD	Max RPD Qualifiers
1,2-Dibromoethane (EDB)	ug/L	.25 0.29	0.30	117 121	70-130	4 20

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 22 of 23

QUALIFIERS

Project: Kansas Waste Water

Pace Project No.: 6066709

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

BATCH QUALIFIERS

Batch: MSV/23759

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

÷ t	2	Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated
		samples may be biased low.
t	.3	Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in
		associated samples. Results unaffected by high bias.
M	/0	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

Date: 10/13/2009 03:25 PM

REPORT OF LABORATORY ANALYSIS

Page 23 of 23

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Appendix D:

Quality Control Data

				Measured Concentration and RPD Va for Calibration Check Standard							
	Recovery of	Recovery of Surrogate Compounds ^a (%)				Chloroform		Meth Chle	iylene oride		
Sample	Fluorobenzene	Bromo- fluorobenzene	1,4-Dichloro- benzene-d ₄	ppb	RPD ^b	ppb	RPD ^b	ppb	RPD ^b		
SDG 09-5-22, analysis date	e May 22, 2009										
20-ppb standard	100	100	100	20.68	3.3	19.42	2.9	22.57	12.1		
Laboratory blank	120	120	116								
AGGW2-W-17806	97	104	100	Outside calibration range for carbon tetrachloride at zero dilution.							
AGQCTB-W-17807	100	104	106								
AGGW5-W-17925	98	102	105								
AGQCBR-W-17926	91	98	100								
AGGW2-W-17893	95			Outside of	calibration	range for	carbon tet	rachloride	at zero		
		104	101	dilutio	n.	J					
AGGW3-W-17894	92	-	-	Outside of	calibration	range for	carbon tet	rachloride	at zero		
	-	109	97	dilutio	n.						
AGGW4-W-17895	88	90	92								
AGGW1-W-17896	87	86	86								
AGGW2-W-17893	83	93	92	Analysis	at dilution	factor (DF	•) 100 for (carbon tetra	achloride.		
AGGW3-W-17894	93	104	106	Analysis	at DF 100	for carbo	, tetrachlo	ride.			
AGGW2-W-17806	89	102	103	Analysis	at DF 100	for carbo	n tetrachlo	ride.			
SDG 09-6-18, analysis dat	e June 18, 2009										
20-ppb standard	85	120	111	24	18.2	23.72	17.0	23.78	17.3		
Laboratory blank	100	100	100								
AGKMW2-W-17941	108	114	107								
AGKMW3-W-17942	108	119	109								
AGMWC-W-17943	106	116	119								
AGMWH-W-17944	106	111	107								
AGMWJ-W-17945	118	111	113								
AGMWL-W-17946	113	113	114								
AGMWM-W-17947	97	91	88								

TABLE D.1 Quality control results for organic analyses of water samples by the purge-and-trap method at the AGEM Laboratory.

				Measured Concentration and RPD Value for Calibration Check Standard						
	Recovery of	f Surrogate Compounds ^a (%)		Carbon Tetrachloride		Chloroform		Methylene Chloride		
Sample	Fluorobenzene	Bromo- fluorobenzene	1,4-Dichloro- benzene-d ₄	ppb	RPD ^b	ppb	RPD ^b	ррb	RPD ^b	
SDG 09-6-18, analysis date Ju	une 18, 2009 (cont.)									
AGMWP-W-17948	108			Outside calibration range at zero dilution. Reanalyzed at						
		107	102	dilutio	n in SDG (09-6-19.				
AGMWQ-W-17949	109	100	110							
AGMWR-W-17950	103	98	99							
AGSB23S-W-17951	93	88	94							
AGSB23S-W-17951DUP	100	92	91							
AGSB36-W-17952	105	98	96							
AGPWS3-W-17953	103	85	88							
AGDW98-W-17954	96	80	84							
SDG 09-6-19, analysis date Ju	une 19, 2009									
20-ppb standard	100	100	100	16.99	16.3	23.35	15.5	23.28	15.2	
Laboratory blank	100	100	100							
AGMWMDUP-W-17955	91	92	93							
AGSB36DUP-W-17956	102	99	116							
AGQCIR-W-17957	99	104	103							
AGQCIR-W-17958	103	108	111							
AGQCTB-W-17959	99	100	104							
AGMWP-W-17948	104	105	112	Analysis	at DF 10.					
AGMWP-W-17948DUP	104	104	103	Duplicate	e analysis	at DF 10.				

^a Quality control range for recovery = 80-120%.

^b Quality control range for RPD = $\pm 20\%$.

					Concentration (µg/L)					
Location	Depth (ft BGL)	Sampling Date	Sample	Sample Type	Carbon Tetrachloride	Chloroform	Methylene Chloride	1,2- Dichloroethane		
GW-2	43-53	5/20/09	AGGW2-W-17806 AGGW2-W-17893	Primary sample Replicate sample	6090 6393	46 42	ND ^a ND	ND ND		
MW-M	59-69	6/15/09	AGMWM-W-17947 AGMWMDUP-W-17955	Primary sample Replicate sample	84 80	1.5 3.5	ND ND	ND ND		
MW-P	35.42- 54.92	6/16/09	AGMWP-W-17948 AGMWP-W-17948DUP	Primary sample Duplicate analysis	260 249	11 11	ND ND	ND ND		
SB23S	49-55	6/16/09	AGSB23S-W-17951 AGSB23S-W-17951DUP	Primary sample Duplicate analysis	59 56	0.8 J ^b 0.8 J	ND ND	ND ND		
SB36	42.7-62.7	6/16/09	AGSB36-W-17952 AGSB36DUP-W-17956	Primary sample Replicate sample	5.1 4.6	0.4 J 0.7 J	ND ND	ND ND		
QC QC	- -	5/20/09 5/20/09	AGQCBR-W-17926 AGQCTB-W-17807	Equipment rinsate Trip blank	ND ND	ND ND	ND ND	ND ND		
QC QC QC	_ _ _	6/16/09 6/16/09 6/16/09	AGQCIR-W-17957 AGQCIR-W-17958 AGQCTB-W-17959	Equipment rinsate Equipment rinsate Trip blank	ND ND ND	ND ND ND	ND ND ND	ND ND ND		

TABLE D.2 Analytical results for quality control samples collected during sitewide monitoring in May-June 2009.

^a ND, not detected at an instrument detection limit of 0.1 μ g/L.

^b Qualifier J indicates an estimated concentration below the quantitation limit of 1.0 μ g/L for the purge-and-trap method.

TestAmerica Laboratories, Inc.

June 9, 2009

Mr. Clyde Dennis Argonne National Laboratory 9700 S. Cass Avenue, Bldg. 203 Office B149 Argonne, IL 60439

Re: Laboratory Project No. 21005 Case: AGRA; SDG: 131854

Dear Mr. Dennis:

Enclosed are analytical results for samples that were received by TestAmerica Burlington on May 22nd, 2009. Laboratory identification numbers were assigned, and designated as follows:

Lab ID	Client	Sample <u>.</u>	Sample
	<u>Sample ID</u>	<u>Date</u>	<u>Matrix</u>
	Received: 05/22/09 ETR No:	131854	
796165	AG-GW2-W-17806	05/20/09	WATER
796166	AG-QCTB-W-17807	05/20/09	WATER
796167	VHBLK01	05/22/09	WATER

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal. The samples, as received, were not acid preserved. On that basis, the laboratory did provide for the analytical work to be performed within seven days of sample collection.

In order to accommodate field length limitations in processing the data summary forms, the laboratory did, in certain instances, abbreviate the sample identifier. The electronically formatted data provides for the full sample identifier.

SOM01.2 Volatile Organics (Trace Level Water)

A storage blank was prepared for volatile organics analysis, and stored in association with the

THE LEADER IN ENVIRONMENTAL TESTING

storage of the samples. That storage blank, identified as VHBLK01, was carried through the holding period with the samples, and analyzed.

Sample AG-GW2-W-17806 was analyzed at a dilution, based on the results of preliminary screening. An additional, more concentrated analysis was performed on the sample in order to provide a lower reporting limit for those target analytes that were not identified as constituents in the primary analysis. Both sets of results for the analysis of sample AG-GW2-W-17806 are included in this submittal. Each of the analyses associated with the sample set exhibited an acceptable internal standard performance. There was an acceptable recovery of each deuterated monitoring compound (DMC) in the analysis each method blank associated with the analytical work, in the analysis of the storage blank associated with the sample set, and in the analysis of each field sample. Matrix spike and matrix spike duplicate analyses were not performed on the samples in this sample set. A trace concentration of acetone was identified in the analysis of each method blank associated with the analytical work. The concentration level in each analysis was below the established reporting limit, and each analysis did meet the technical acceptance criteria for a compliant method blank analysis. A trace concentration of acetone was identified in the analysis of the storage blank associated with the analytical work. The concentration level in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant storage blank analysis. Present in the method blank and storage blank analyses was a non-target constituent that represented a compound that is related to the DMC formulation. The fact that the presence of this compound is not within the laboratory's control is at issue. The derived results for that compound have been qualified with an "X" qualifier to reflect the source of the contamination.

The responses for each target analyte met the relative standard deviation criterion in the initial calibration. The response for each target analyte met the percent difference criterion in the continuing calibration check acquisition. The response for each target analyte met the 50.0 percent difference criterion in each closing calibration check acquisition.

The primary quantitation mass for methylcyclohexane that is specified in the Statement of Work is mass 83. The laboratory did identify a contribution to mass 83 from 1,2-dichloropropane- d_6 , one of the deuterated monitoring compounds (DMCs). The laboratory did change the primary quantitation mass assignment to mass 55 for the quantification of methylcyclohexane.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports. Extracted ion current profiles for each manual integration are included in the data package, and further documented in the Sample Preparation section of this submittal.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Kirk F. Young Project Manager

KFY/hsf Enclosure

TestAmerica Burlington Data Qualifier Definitions

<u>Organic</u>

- U: Compound analyzed but not detected at a concentration above the reporting limit.
- J: Estimated value.
- N: Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P: SW-846: The relative percent difference for detected concentrations between two GC columns is greater than 40%. Unless otherwise specified the higher of the two values is reported on the Form I.

CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.

- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
 - Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

ICP-AES P

- MS ICP-MS
- CV Cold Vapor AA
- AS Semi-Automated Spectrophotometric

FQA009:02.18.08:4 TestAmerica Burlington

1

4397

MATRIX: WATER	ARC	ON	NE N	IAT	ION/	AL L	ABO	RAT	OR	1	Sh	ippir	na Co	ontain	er No.			······································
RECEIVING LAB: TEST AMERICA	C	HAI	N OF	F Cl	JST	ODY	REC	OR	D*.		Sh	ippir	ng Inf	o:				
PROJECT/SITE: AGRA REMED					A	VALY	'SIS				22	1 Fi	eld C - 4/(t (Name 902	e & Temp	orary Ph	one):
SAMPLER(S) (Signature) Bob Dearry	Number of	Y			•					·							<u></u>	
DATE OF COLLECTION SAMPLE ID NUMBER(S)	con- tainers	Č S									۰. ۱			•	REN	IARKS		
5-20-09 AG-GW2-W-1780G	2X40	$\overline{1}$														· · · · · · · · · · · · · · · ·		
11 AG-QCTB-W-17807	1×40	V																· · ·
						·		·										
								\vdash	1			•						
	•					1	1		ļ	· ·								
				1	1				<u> </u>									
			\square	<u> </u>													,	
				· .														· ·
																·.		
			·			·									•			
														· ·				•
			\geq	\triangleleft			_											
	·	 			그				<u> </u>									:
			<u> </u>			$-\Gamma$	≯	1	<u> </u>			•			· · · ·		·	······································
			<u> </u>			· ľ		Γ	<u>+</u>						·			
Relinquished by (Signature) Date Time Received	ed by (Sig	natui - 5	re) 22	ษ	Reli	nquis 25	hed t	oy (Si	ignat	ure)	•	Dat	e	Tir	ne	Receive	d by (Sig	inature)
Relinquished by (Signature) Date Time Received	ed for Lab	orato	ory by	1	Date	e		Ti	me	· · · ·	Rei	nark	3.					
				· .					• .									
Y N FOR LAB USE ONLY		_ */	A san	nple	is ur	nder o	ustoc	ly if:							÷ .			
Custody seal was intact when shipment received.		1.	lt is	in yo	our p	osse	ssion	; or,		. · ·	•	•						
Sample containers were intact when received.		2.	lt is	in yo	our v	iew, a	after h	avin	g bee	en in	your	poss	essio	n ; or, _.			• •	
Shipment was at required temperature when receive	ed.	3.	flt wa	as in	you	r pos	sessio	on an	id yo	u loci	(ed it	up;	or,			·.	•	
Sample labels, Tags and COC agree.		4.	It is	in a	desi	gnate	d sec	ure a	area.		<u>.</u>							
Argonne National Laboratory, Applied Geosciences & En	vironmen	tal Mg	gt. Gr	roup	, Env	/ironn	nenta	l Res	searc	h Dív	ision	, 970	0 S. (Jass A	venue, A	vrgonne, l	. 60439	

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

AGGW2W17806

Contract: 21005 Lab Name: TESTAMERICA BURLINGTON Lab Code: STLV Case No.: AGRA Mod. Ref No.: SDG No.: 131854 Matrix: (SOIL/SED/WATER) Water Lab Sample ID: 796165 Lab File ID: 796165D2 Sample wt/vol: 25.0 (g/mL) mL Date Received: 05/22/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 05/27/2009 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 19.1 Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Purge Volume: 25.0 (mL)

			CONCENTRATION UNITS:	
Ì	CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
	=== ====			========
	75-71-8	Dichlorodifluoromethane	9.6	U
	74-87-3	Chloromethane	9.6	U
	75-01-4	Vinyl chloride	9.6	U
	74-83-9	Bromomethane	9.6	U
Í	75-00-3	Chloroethane	.9.6	ט (
	75-69-4	Trichlorofluoromethane	9.6	U U
ĺ	75-35-4	1,1-Dichloroethene	9.6	U U
	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	9.6	U U
ĺ	67-64-1	Acetone	83	JB
	75-15-0	Carbon disulfide	9.6	ט
	79-20-9	Methyl acetate	9.6	υ
	75-09-2	Methylene chloride	9.6	U U
	156-60-5	trans-1,2-Dichloroethene	9.6	υ
Ì	1634-04-4	Methyl tert-butyl ether	9.6	U
	75-34-3	1,1-Dichloroethane	9.6	U
	156-59-2	cis-1,2-Dichloroethene	9.6	U
İ	78-93-3	2-Butanone	210	
İ	74-97-5	Bromochloromethane	9.6	U
	67-66-3	Chloroform	25	
	71-55-6	1,1,1-Trichloroethane	9.6	υ
İ	110-82-7	Cyclohexane	9.6	U
İ	56-23-5	Carbon tetrachloride	2500	E
	71-43-2	Benzene	9.6	ט
l	107-06-2	1,2-Dichloroethane	9.6	ט
İ				

Report 1,4-Dioxane for Low-Medium VOA analysis only

SOM01.2

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

AGGW2W17806

Lab Name: TESTAMERICA BURLINGTON		Contract: 21005		•
Lab Code: STLV Case No.: AGRA	Mod. R	lef No.:	SDG No.: 131854	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 7961	165	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 79616	5D2	
Level: (TRACE/LOW/MED) TRACE		Date Received: 05/2	22/2009	
% Moisture: not dec.		Date Analyzed: 05/2	27/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	9.1	
Soil Extract Volume:	(uL)	Soil Aliquot Volum	e:	(uL)
Purge Volume: 25.0	(mL)		• · · · ·	

1		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
		======================================	
79-01-6	Trichloroethene	9.6	υ
108-87-2	Methylcyclohexane	9.6	υ
78-87-5	1,2-Dichloropropane	9.6	υ
75-27-4	Bromodichloromethane	9.6	υ
10061-01-5	cis-1,3-Dichloropropene	9.6	υ
108-10-1	4-Methyl-2-pentanone	96	υ
108-88-3	Toluene	9.6	υ
10061-02-6	trans-1,3-Dichloropropene	9.6	υ
79-00-5	1,1,2-Trichloroethane	9.6	ט
127-18-4	Tetrachloroethene	9.6	υ
591-78-6	2-Hexanone	96	U
124-48-1	Dibromochloromethane	9.6	U
106-93-4	1,2-Dibromoethane	9.6	<u></u> <u></u>
108-90-7	Chlorobenzene	9.6	υ
100-41-4	Ethylbenzene	9.6	υ
95-47-6	o-Xylene	9.6	ַד
179601-23-1	m,p-Xylene	9.6	υ
100-42-5	Styrene	9.6	υ
75-25-2	Bromoform	9.6	י די
98-82-8	Isopropylbenzene	9.6	υ
79-34-5	1,1,2,2-Tetrachloroethane	9.6	U
541-73-1	1,3-Dichlorobenzene	9.6	υ
106-46-7	1,4-Dichlorobenzene	9.6	U
95-50-1	1,2-Dichlorobenzene	9.6	י די
96-12-8	1,2-Dibromo-3-chloropropane	9.6	U
120-82-1	1,2,4-Trichlorobenzene	9.6	υ
87-61-6	1,2,3-Trichlorobenzene	9.6	υ
			<u> </u>

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

AGGW2W17806D Lab Name: TESTAMERICA BURLINGTON Contract: 21005 Case No.: AGRA Mod. Ref No.: SDG No.: 131854 Lab Code: STLV Matrix: (SOIL/SED/WATER) Water Lab Sample ID: 796165D1 Lab File ID: 796165D Sample wt/vol: 25.0 (g/mL) mL Date Received: 05/22/2009 Level: (TRACE/LOW/MED) TRACE % Moisture: not dec. Date Analyzed: 05/27/2009 Dilution Factor: 191.0 GC Column: DB-624 ID: 0.53 (mm) Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) (mL) Purge Volume: 25.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) $\underline{ug/L}$	Q
=======================================	***************************************	=======================================	========
75-71-8	Dichlorodifluoromethane	96	U
74-87-3	Chloromethane	96	U
75-01-4	Vinyl chloride	96	υ
74-83-9	Bromomethane	96	υ
75-00-3	Chloroethane	96	ប
75-69-4	Trichlorofluoromethane	96	υ
75-35-4	1,1-Dichloroethene	96	U U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	96	U
67-64-1	Acetone	450	DJB
75-15-0	Carbon disulfide	96	ט (
79-20-9	Methyl acetate	96	U
75-09-2	Methylene chloride	96	U U
156-60-5	trans-1,2-Dichloroethene	96	U U
1634-04-4	Methyl tert-butyl ether	96	<u></u> ד
75-34-3	1,1-Dichloroethane	96	U U
156-59-2	cis-1,2-Dichloroethene	96	U
78-93-3	2-Butanone	320	DJ
74-97-5	Bromochloromethane	96	ע
67-66-3	Chloroform	96	U U
71-55-6	1,1,1-Trichloroethane	96	ט
110-82-7	Cyclohexane	96	ט
56-23-5	Carbon tetrachloride	3000	D
71-43-2	Benzene	96	U
107-06-2	1,2-Dichloroethane	96	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

SOM01.2

EPA SAMPLE NO.

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

AGGW2W17806D

Lab Name: TESTAMERICA BURLINGTON		Contract: 21005		
Lab Code: STLV Case No.: AGRA	Mod. H	Ref No.:	SDG No.: 131854	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 796	165D1	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 79616	5D	
Level: (TRACE/LOW/MED) TRACE		Date Received: 05/	22/2009	
% Moisture: not dec.		Date Analyzed: 05/	27/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	.91.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volum	ne:	(uL)
Purge Volume: 25.0	(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================			
79-01-6	Trichloroethene	96	U
108-87-2	Methylcyclohexane	96	Ŭ
78-87-5	1,2-Dichloropropane	96	Ŭ
75-27-4	Bromodichloromethane	96	U
10061-01-5	cis-1,3-Dichloropropene	96	U
108-10-1	4-Methyl-2-pentanone	960	υ
108-88-3	Toluene	96	υ
10061-02-6	trans-1,3-Dichloropropene	96	υ
79-00-5	1,1,2-Trichloroethane	96	ט
127-18-4	Tetrachloroethene	96	υ
591-78-6	2-Hexanone	960	υ
124-48-1	Dibromochloromethane	96	ט ו
106-93-4	1,2-Dibromoethane	96	ע ן
108-90-7	Chlorobenzene	96	U
100-41-4	Ethylbenzene	96	ט ו
95-47-6	o-Xylene	96	ע ו
179601-23-1	m,p-Xylene	96	ט
100-42-5	Styrene	96	υ
75-25-2	Bromoform	96	U
98-82-8	Isopropylbenzene	96	U
79-34-5	1,1,2,2-Tetrachloroethane	96	ט
541-73-1	1,3-Dichlorobenzene	96	υ
106-46-7	1,4-Dichlorobenzene	96	U
95-50-1	1,2-Dichlorobenzene	96	U
96-12-8	1,2-Dibromo-3-chloropropane	96	U
120-82-1	1,2,4-Trichlorobenzene	96	U U
87-61-6	1,2,3-Trichlorobenzene	96	υ
•			

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

AGQCTBW17807

Lab Name: TESTAMERICA BURLINGTON		Contract: 21005		
Lab Code: STLV Case No.: AGRA	Mod.	Ref No.:	SDG No.: 131854	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 796	166	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 79616	6	
Level: (TRACE/LOW/MED) TRACE		Date Received: 05/	22/2009	
% Moisture: not dec.		Date Analyzed: 05/	27/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	0	·
Soil Extract Volume:	(uL)	Soil Aliquot Volum	ne:	(uL)
Purge Volume: 25.0	(mL)			

1		CONCENTRATION UNITS:	
CASNO	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
		=======================================	=======
75-71-8	Dichlorodifluoromethane	0.50	υ
74-87-3	Chloromethane	0.50	ΰ
75-01-4	Vinyl chloride	0.50	υ
71_93_9	Bromomethane	0.50	ប
	Chloroethane	0.50	ប
75-69-4	Trichlorofluoromethane	0.50	υ
75-05-4	1 1-Dichloroethene	0.50	U
75-33 4	1 1 2-Trichloro-1.2.2-trifluoroethane	0.50	U.
67-64-1		4.4	JB
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-20-2	Methylene chloride	0.50	U
156-60-5	trans-1 2-Dichloroethene	0.50	ប
1634-04-4	Methyl tert-butyl ether	0.50	ប
	1 1-Dichloroethane	0.50	U
156-59-2	cis-1 2-Dichloroethene	0.50	U
150-59-2	2-Butanone	5.0	U
76-93-5	Bromochloromethane	0.50	U
67 66-3	Chloroform	0.50	U
71 55-6	1 1 1 -Trichloroethane	0.50	U
110 92-7	Cyclohevane	0.50	ט
TT0-82-7	Carbon tetrachloride	0.50	ט
56-23-5	Ponzene	0.50	ט
	1 2-Dichloroethane	0.50	ט
107-06-2	1, Z-Dichitorocchance		

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

AGQCTBW17807

Lab Name: TESTAMERICA BURLINGTON		Contract: 21005		
Lab Code: STLV Case No.: AGRA	Mod. Re	ef No.:	SDG No.: 131854	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 7961	L66	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 796166	5	
Level: (TRACE/LOW/MED) TRACE		Date Received: 05/2	22/2009	
% Moisture: not dec.		Date Analyzed: 05/2	27/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	. 0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume	2:	(uL)
Purge Volume: 25.0	(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
================			=======
79-01-6	Trichloroethene	0.50	Ŭ
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	Ŭ
10061-01-5	cis-1,3-Dichloropropene	0.50	. U
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	0.90	
10061-02-6	trans-1,3-Dichloropropene	0.50	υ
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	ט
591-78-6	2-Hexanone	5.0	υ
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	ט
108-90-7	Chlorobenzene	0.50	ט ו
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	ט (
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	Ū
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	υ
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	ט ו
120-82-1	1,2,4-Trichlorobenzene	0.50	υ
87-61-6	1,2,3-Trichlorobenzene	0.50	υ
ĺ			<u> </u>
EPA SAMPLE NO.

VHBLK01 Lab Name: TESTAMERICA BURLINGTON Contract: 21005 Lab Code: STLV Case No.: AGRA Mod. Ref No.: SDG No.: 131854 Lab Sample ID: 796167 Matrix: (SOIL/SED/WATER) Water Lab File ID: 796167 Sample wt/vol: 25.0 (g/mL) mL Level: (TRACE/LOW/MED) TRACE Date Received: Date Analyzed: 05/29/2009 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Purge Volume: 25.0 (mL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================	***************************************		========
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	ט
75-01-4	Vinyl chloride	0.50	ט
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	ΰ.
75-35-4	1,1-Dichloroethene	0.50	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	υ
67-64-1	Acetone	2.7	JB
75-15-0	Carbon disulfide	0.50	υ
79-20-9	Methyl acetate	0.50	υ
75-09-2	Methylene chloride	0.50	ט ו
156-60-5	trans-1,2-Dichloroethene	0.50	υ
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U U
156-59-2	cis-1,2-Dichloroethene	0.50	U U
78-93-3	2-Butanone	5.0	ט
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	. 0.50	ט
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	ן ט
71-43-2	Benzene	0.50	U .
107-06-2	1,2-Dichloroethane	0.50	υ

Report 1,4-Dioxane for Low-Medium VOA analysis only

EPA SAMPLE NO.

VHBLK01 Contract: 21005 Lab Name: TESTAMERICA BURLINGTON SDG No.: 131854 Lab Code: STLV Case No.: AGRA Mod. Ref No.: Lab Sample ID: 796167 Matrix: (SOIL/SED/WATER) Water Lab File ID: 796167 Sample wt/vol: 25.0 (g/mL) mL Date Received: Level: (TRACE/LOW/MED) TRACE Date Analyzed: 05/29/2009 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) (mL) Purge Volume: 25.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================			
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	
75-27-4	Bromodichloromethane	0.50	
10061-01-5	cis-1,3-Dichloropropene	0.50	
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	ט די
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U נו
108-90-7	Chlorobenzene	0.50	U U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	υ
179601-23-1	m,p-Xylene	0.50	υ
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	ט
95-50-1	1.2-Dichlorobenzene	0.50	υ
96-12-8	1,2-Dibromo-3-chloropropane	0.50	ט
120-82-1	1.2.4-Trichlorobenzene	0.50	U
87-61-6	1.2.3-Trichlorobenzene	0.50	U

June 26, 2009

TestAme

THE LEADER IN ENVIRONMENTAL TESTING

Mr. Clyde Dennis Argonne National Laboratory 9700 S. Cass Avenue Bldg. 203, Office B149 Argonne, IL 60439

Re: Laboratory Project No. 21005 Case: AGRA; SDG: 132257

Dear Mr. Dennis:

Enclosed are analytical results for samples that were received by TestAmerica Burlington on June 18th, 2009. Laboratory identification numbers were assigned, and designated as follows:

<u>Lab ID</u>	Client	Sample	Sample
	<u>Sample ID</u>	<u>Date</u>	<u>Matrix</u>
	Received: 06/18/09 ETR No:	132257	
798627	AGMWC-W-17943	06/15/09	WATER
798628	AGMWJ-W-17945	06/16/09	WATER
798629	AGMWP-W-17948	06/16/09	WATER
798630	AGMWQ-W-17949	06/16/09	WATER
798631	AGQCTB-W-17959	06/16/09	WATER
798632	VHBI K01	06/18/09	WATER

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal. The samples, as received, were not acid preserved. On that basis, the laboratory did provide for the analytical work to be performed within seven days of sample collection.

In order to accommodate field length limitations in processing the data summary forms, the laboratory did, in certain instances, abbreviate the sample identifier. The electronically formatted data provides for the full sample identifier.

SOM01.2 Volatile Organics (Trace Level Water)

A storage blank was prepared for volatile organics analysis, and stored in association with the

30 Community Drive, Suite 11 South Burlington, VT 05403 tel 802.660.1990 fax 802.660.1919 www.testamericainc.com

storage of the samples. That storage blank, identified as VHBLK01, was carried through the holding period with the samples, and analyzed.

Sample AGMWP-W-17948 was analyzed at a dilution, based on the results of preliminary screening. An additional, more concentrated analysis was performed on the sample in order to provide a lower reporting limit for those target analytes that were not identified as constituents in the primary analysis. Both sets of results for the analysis of sample AGMWP-W-17948 are included in this submittal. Each of the analyses associated with the sample set exhibited an acceptable internal standard performance. There was an acceptable recovery of each deuterated monitoring compound (DMC) in the analysis the method blank and instrument blank associated with the analytical work. The analysis of the samples in this sample set did meet the technical acceptance criteria specific to DMC recoveries, although not all DMC recoveries were within the control range in each analysis. The technical acceptance criteria does provide for the recovery of up to three DMCs to fall outside of the control range in the analysis of field samples. The derived recovery of 2-hexanone-d₅ was elevated in the analysis of samples AGMWC-W-17943 and AGMWQ-W-17949, and in the dilution analysis of sample AGMWP-W-17948. Matrix spike and matrix spike duplicate analyses were not performed on the samples in this sample set. The analysis of the method blank associated with the analytical work was free of contamination, as was the analysis of the instrument blank. The analysis of the storage blank associated with the sample set was free of contamination. Present in the method blank, instrument blank, and storage blank analyses was a non-target constituent that represented a compound that is related to the DMC formulation. The fact that the presence of this compound is not within the laboratory's control is at issue. The derived results for that compound have been qualified with an "X" qualifier to reflect the source of the contamination.

The responses for each target analyte met the relative standard deviation criterion in the initial calibration. The response for each target analyte met the percent difference criterion in the continuing calibration check acquisition. The response for each target analyte met the 50.0 percent difference criterion in the closing calibration check acquisition.

The primary quantitation mass for methylcyclohexane that is specified in the Statement of Work is mass 83. The laboratory did identify a contribution to mass 83 from 1,2-dichloropropane- d_6 , one of the deuterated monitoring compounds (DMCs). The laboratory did change the primary quantitation mass assignment to mass 55 for the quantification of methylcyclohexane.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports. Extracted ion current profiles for each manual integration are included in the data package, and further documented in the Sample Preparation section of this submittal.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Kirk F. Young Project Manager

KFY/hsf Enclosure

<u>Organic</u>

- U: Compound analyzed but not detected at a concentration above the reporting limit.
- J: Estimated value.
- N: Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P: SW-846: The relative percent difference for detected concentrations between two GC columns is greater than 40%. Unless otherwise specified the higher of the two values is reported on the Form I.

CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.

- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
- * Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

P ICP-AES

- MS ICP-MS
- CV Cold Vapor AA

AS Semi-Automated Spectrophotometric

FQA009:02.18.08:4 TestAmerica Burlington

2520

RECEIVING LAB: Test America CHAIN OF CUSTODY RECORD* Shipping Info: ANL Field Contact (Name & Temporary Phone): PROJECT/SITE: Agra, KS ANALYSIS ANL Field Contact (Name & Temporary Phone): SAMPLER(S) (Signature) Number of con- tainers V V V DATE OF COLLECTION SAMPLE ID NUMBER(S) Number of con- tainers V V V (6 - 15 - 09 A/6 MWG - W - 17943 2 2 ////////////////////////////////////
PROJECT/SITE: Agro, KS ANALYSIS ANL Field Contact (Name & Temporary Phone): SAMPLER(S) (Signature) Multiple V V V REMARKS DATE OF COLLECTION SAMPLE ID NUMBER(S) Number of contact (Name & Temporary Phone): V V V V $G - 15 - 09$ A(G MUL - US - 17943) 2 2 V
SAMPLER(S) (Signature) Muther V V P DATE OF COLLECTION SAMPLE ID NUMBER(S) Number of containers V P $G - 15 - 09$ AGMUC - W-17943 2 2 P P $G - 16 - 09$ AGMUC - W-17945 2 2 P P P $G - 16 - 09$ AGMUS - W-17948 2 2 P P P P $G - 16 - 09$ AGMUS - W-17949 2 2 P
DATE OF COLLECTION SAMPLE ID NUMBER(S) $tainers$ C REMARKS $6 - 15 - 09$ $A (-M w - w - 17943)$ 2 2 $2 \times 40m1$ $6 - 1c_{2} + Am.$ $6 - 16 - 09$ $A (-M w - w - 17943)$ 2 2 2 2 $1 + 1$ $A (-M w - w - 17943)$ 2 2 2 2 $6 - 16 - 09$ $A (-M w - w - 17943)$ 2 2 2 2 $6 - 16 - 09$ $A (-M w - w - 17943)$ 2 2 2 2 $6 - 16 - 09$ $A (-M w - w - 17943)$ 2 2 2 2 $6 - 16 - 09$ $A (-M w - w - 17943)$ 2 2 2 2 $6 - 16 - 09$ $A (-M w - w - 17943)$ 2 2 2 2 2 $6 - 16 - 09$ $A (-M w - w - 17959)$ 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
G-15-09 AGMWC-W-17943 2 2 2 2 2 1 1 Control for Vol to Test Am. G-16-09 AGMWP-W-17948 2 2 1
6-16-09 AGMWJ-W-17945 2 2 AGMWP-W-17948 2 2 AGMWQ-W-17949 2 2 6-16-09 AGQCTB-W-17959 2 2 2 2 AGMWQ-W-17959 2 2 2 40 ml for Uoc to Test Am.
AGMUSP-W-17948 2 2 1 AGMWQ-W-17949 2 G-16-09 AGQCT3-W-17959 2
6-16-09 AGQLTB-W-17949 2 2 2 2 2 2 40 ml for Voc to Test Am.
6-16-09 AGQCTB-W-17959 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Received by (Signature) Date Time Received by (Signature)
Relinquished by (Signature) Date nime Received by (Signature) neuropation of (Signature)
Relinquished by (Signature) Date Time Received for Laboratory by Date Time Remarks
FOR LAR LISE ONLY *A sample is under custody if:
Y N FOR LAB USE ONLI A sample to under decely and
Custoay seal was intact when shipment received.
3. It was in your possession and you locked it up; or,
4. It is in a designated secure area.
Arconne National Laboratory, Applied Geosciences & Environmental Mgt. Group, Environmental Research Division, 9700 S. Cass Avenue, Argonne, IL 60439

EPA SAMPLE NO.

AGMWCW17943

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON Lab Code: STLV Case No.: AGRA Mod. Ref No.: SDG No.: 132257 Lab Sample ID: 798627 Matrix: (SOIL/SED/WATER) Water Lab File ID: 798627 Sample wt/vol: 25.0 (g/mL) mL Date Received: 06/18/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 06/19/2009 % Moisture: not dec. Dilution Factor: 1.0 ID: 0.53 (mm) GC Column: DB-624 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: (mL) Purge Volume: 25.0

	· ·	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================			========
75-71-8	Dichlorodifluoromethane	0.50	
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	
74-83-9	Bromomethane	0.50	
75-00-3	Chloroethane	0.50	
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	
75-34-3	1,1-Dichloroethane	0.50	
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	Ŭ
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	ט

Report 1,4-Dioxane for Low-Medium VOA analysis only

EPA SAMPLE NO.

AGMWCW17943

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	1 <u></u>	
Lab Code: STLV Case No.: AGRA	Mod. Re	ef No.:	SDG No.: 132257	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 7986	527	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 798627	7	
Level: (TRACE/LOW/MED) TRACE		Date Received: 06/1	18/2009	
% Moisture: not dec.		Date Analyzed: 06/2	19/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume	2:	(uL)
Purge Volume: 25.0	(mL)		· ·	

Ľ	1		CONCENTRATION UNITS:	
	CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q Q
	=======================================			========
l	79-01-6	Trichloroethene	0.50	υ
ļ	108-87-2	Methylcyclohexane	0.50	ט
l	78-87-5	1,2-Dichloropropane	0.50	ט
ļ	75-27-4	Bromodichloromethane	0.50	U
i	10061-01-5	cis-1,3-Dichloropropene	0.50	U
	108-10-1	4-Methyl-2-pentanone	5.0	ט
İ	108-88-3	Toluene	0.50	ע
	10061-02-6	trans-1,3-Dichloropropene	0.50	υ
I	79-00-5	1,1,2-Trichloroethane	0.50	υ
	127-18-4	Tetrachloroethene	0.50	U
i	591-78-6	2-Hexanone	5.0	υ
	124-48-1	Dibromochloromethane	0.50	υ
İ	106-93-4	1,2-Dibromoethane	0.50	U
	108-90-7	Chlorobenzene	0.50	ט
İ	100-41-4	Ethylbenzene	0.50	U
	95-47-6	o-Xylene	0.50	U
	179601-23-1	m,p-Xylene	0.50	U
	100-42-5	Styrene	0.50	U .
	75-25-2	Bromoform	0.50	U
l	98-82-8	Isopropylbenzene	0.50	U
	79-34-5	1,1,2,2-Tetrachloroethane	0.50	υ
	541-73-1	1.3-Dichlorobenzene	0.50	ט ו
	106-46-7	1,4-Dichlorobenzene	0.50	ט ו
ļ	95-50-1	1,2-Dichlorobenzene	0.50	ט
	96-12-8	1,2-Dibromo-3-chloropropane	0.50	ט
	120-82-1	1,2,4-Trichlorobenzene	0.50	U
	87-61-6	1,2,3-Trichlorobenzene	0.50	U
				_ I

EPA SAMPLE NO.

AGMWJW17945

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	1	<u> </u>
Lab Code: STLV Case No.: AGRA	Mod. R	ef No.:	SDG No.: 132257	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 7986	528	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 798628	3	
Level: (TRACE/LOW/MED) TRACE		Date Received: 06/2	18/2009	
% Moisture: not dec.		Date Analyzed: 06/1	19/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	. 0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume	e:	(uL)
Purge Volume: 25.0	(mL)			

1	and the second	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
			========
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	υ
75-35-4	1,1-Dichloroethene	0.50	υ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	υ
67-64-1	Acetone	5.0	υ
75-15-0	Carbon disulfide	0.50	ט
79-20-9	Methyl acetate	0.50	υ
75-09-2	Methylene chloride	0.50	υ
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	υ
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	υ
78-93-3	2-Butanone	5.0	ט
74-97-5	Bromochloromethane	0.50	ט ד
67-66-3	Chloroform	0.50	ט
71-55-6	1,1,1-Trichloroethane	0.50	ט
110-82-7	Cyclohexane	0.50	ט
56-23-5	Carbon tetrachloride	19	
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	ט
·			

EPA SAMPLE NO.

AGMWJW17945

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: AGRA	Mod. Ref No.: SDG No.: 132257
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 798628
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: 798628
Level: (TRACE/LOW/MED) TRACE	Date Received: 06/18/2009
% Moisture: not dec.	Date Analyzed: 06/19/2009
GC Column: DB-624 ID: 0.53	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume: (uL
Purge Volume: 25.0	(mL)

1		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
========			
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	
78-87-5	1,2-Dichloropropane	0.50	
75-27-4	Bromodichloromethane	0.50	
10061-01-5	cis-1,3-Dichloropropene	0.50	
108-10-1	4-Methyl-2-pentanone	5.0	
108-88-3	Toluene	0.50	
10061-02-6	trans-1,3-Dichloropropene	0.50	
79-00-5	1,1,2-Trichloroethane	0.50	
127-18-4	Tetrachloroethene	0.50	
591-78-6	2-Hexanone	5.0	
124-48-1	Dibromochloromethane	0.50	
106-93-4	1,2-Dibromoethane	0.50	
108-90-7	Chlorobenzene	0.50	
100-41-4	Ethylbenzene	0.50	
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	
100-42-5	Styrene	0.50	
75-25-2	Bromoform	0.50	
98-82-8	Isopropylbenzene	0.50	
79-34-5	1,1,2,2-Tetrachloroethane	0.50	
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	ן ט

GMWPW17948 Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON SDG No.: 132257 Lab Code: STLV Case No.: AGRA Mod. Ref No.: Lab Sample ID: 798629 Matrix: (SOIL/SED/WATER) Water Lab File ID: 798629D2 (g/mL) mL Sample wt/vol: 25.0 Date Received: 06/18/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 06/19/2009 % Moisture: not dec. Dilution Factor: 2.8 GC Column: DB-624 ID: 0.53 (mm) (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: (mL) Purge Volume: 25.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) $\underline{ug/L}$	Q
=======================================			=======
75-71-8	Dichlorodifluoromethane	1.4	U
74-87-3	Chloromethane	1.4	U
75-01-4	Vinyl chloride	1.4	U
74-83-9	Bromomethane	1.4	U
75-00-3	Chloroethane	1.4	U
75-69-4	Trichlorofluoromethane	1.4	U
75-35-4	1,1-Dichloroethene	1.4	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.4	U
67-64-1	Acetone	14	U
75-15-0	Carbon disulfide	1.4	ט ו
79-20-9	Methyl acetate	1.4	ע ו
75-09-2	Methylene chloride	1.4	U
156-60-5	trans-1,2-Dichloroethene	1.4	U
1634-04-4	Methyl tert-butyl ether	1.4	U
75-34-3	1,1-Dichloroethane	1.4	U
156-59-2	cis-1,2-Dichloroethene	1.4	U
78-93-3	2-Butanone	14	U
74-97-5	Bromochloromethane	1.4	U
67-66-3	Chloroform	6.6	
71-55-6	1,1,1-Trichloroethane	1.4	U
110-82-7	Cyclohexane	1.4	U
56-23-5	Carbon tetrachloride	340	E
71-43-2	Benzene	1.4	U
107-06-2	1,2-Dichloroethane	1.4	U
-			

Report 1,4-Dioxane for Low-Medium VOA analysis only

SOM01.2

EPA SAMPLE NO.

GMWPW17948

					······	
Lab Name: TESTAMERICA	BURLINGTON		Contract: 8E-00302			
Lab Code: STLV Case	No.: AGRA	Mod. Re	ef No.:	SDG No.:	132257	
Matrix: (SOIL/SED/WATE	R) Water		Lab Sample ID: 798	629		
Sample wt/vol: 25.0	(g/mL) mL		Lab File ID: 79862	9D2		
Level: (TRACE/LOW/MED)	TRACE		Date Received: 06/	18/2009		
% Moisture: not dec.			Date Analyzed: 06/	19/2009		
GC Column: DB-624	ID: 0.53	(mm)	Dilution Factor: 2	.8		
Soil Extract Volume:		(uL)	Soil Aliquot Volum	e:	(uI	ר)
Purge Volume: 25.0		(mL)				

11		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================		== ====================================	========
79-01-6	Trichloroethene	1.4	U
108-87-2	Methylcyclohexane	1.4	U
78-87-5	1,2-Dichloropropane	1.4	U
75-27-4	Bromodichloromethane	1.4	U
10061-01-5	cis-1,3-Dichloropropene	1.4	U
108-10-1	4-Methyl-2-pentanone	14	U
108-88-3	Toluene	1.4	U
10061-02-6	trans-1,3-Dichloropropene	1.4	U
79-00-5	1,1,2-Trichloroethane	1.4	U
127-18-4	Tetrachloroethene	1.4	U
591-78-6	2-Hexanone	14	U
124-48-1	Dibromochloromethane	1.4	U
106-93-4	1,2-Dibromoethane	1.4	
108-90-7	Chlorobenzene	1.4	
100-41-4	Ethylbenzene	1.4	U
95-47-6	o-Xylene	1.4	
179601-23-1	m,p-Xylene	1.4	U
100-42-5	Styrene	1.4	U
75-25-2	Bromoform	1.4	U
98-82-8	Isopropylbenzene	1.4	U
79-34-5	1,1,2,2-Tetrachloroethane	1.4	U
541-73-1	1,3-Dichlorobenzene	1.4	U
106-46-7	1,4-Dichlorobenzene	1.4	Ų
95-50-1	1,2-Dichlorobenzene	1.4	U
96-12-8	1,2-Dibromo-3-chloropropane	1.4	U .
120-82-1	1,2,4-Trichlorobenzene	1.4	U
87-61-6	1,2,3-Trichlorobenzene	1.4	U
			_1

EPA SAMPLE NO.

GMWPW17948DL

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON Mod. Ref No.: SDG No.: 132257 Lab Code: STLV Case No.: AGRA Lab Sample ID: 798629D1 Matrix: (SOIL/SED/WATER) Water Lab File ID: 798629D Sample wt/vol: 25.0 (g/mL) mL Date Received: 06/18/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 06/19/2009 % Moisture: not dec. Dilution Factor: 27.5 GC Column: DB-624 ID: 0.53 (mm) Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Purge Volume: 25.0 (mL)

			CONCENTRATION UNITS:	
	CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
1		.======================================		=======
Ì	75-71-8	Dichlorodifluoromethane	14	U
I	74-87-3	Chloromethane	14	υ
I	75-01-4	Vinyl chloride	14	υ
İ	74-83-9	Bromomethane	14	υ
I	75-00-3	Chloroethane	14	υ
	75-69-4	Trichlorofluoromethane	14	υ
İ	75-35-4	1,1-Dichloroethene	14	υ
İ	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	14	υ
1	67-64-1	Acetone	140	υ
	75-15-0	Carbon disulfide	14	ט
	79-20-9	Methyl acetate	14	U
İ	75-09-2	Methylene chloride	14	υ
	156-60-5	trans-1,2-Dichloroethene	14	U
	1634-04-4	Methyl tert-butyl ether	14	U
	75-34-3	1,1-Dichloroethane	14	U
	156-59-2	cis-1,2-Dichloroethene	14	U [
	78-93-3	2-Butanone	140	U
	74-97-5	Bromochloromethane	14	U
	67-66-3	Chloroform	7.5	DJ
	71-55-6	1,1,1-Trichloroethane	14	υ
	110-82-7	Cyclohexane	14	υ
	56-23-5	Carbon tetrachloride	340	D
	71-43-2	Benzene	14	υ
	107-06-2	1,2-Dichloroethane	14	ע

GMWPW17948DL Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON Lab Code: STLV Case No.: AGRA Mod. Ref No.: SDG No.: 132257 Lab Sample ID: 798629D1 Matrix: (SOIL/SED/WATER) Water (g/mL) mL Lab File ID: 798629D Sample wt/vol: 25.0 Date Received: 06/18/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 06/19/2009 % Moisture: not dec. Dilution Factor: 27.5 GC Column: DB-624 ID: 0.53 (mm) Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) (mL) Purge Volume: 25.0

	· · · · · · · · · · · · · · · · · · ·	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
===========		=======================================	=======
79-01-6	Trichloroethene	14	U
108-87-2	Methylcyclohexane	14	U
78-87-5	1,2-Dichloropropane	14	U
75-27-4	Bromodichloromethane	14	U
10061-01-5	cis-1,3-Dichloropropene	14	U
108-10-1	4-Methyl-2-pentanone	140	U
108-88-3	Toluene	14	U
10061-02-6	trans-1,3-Dichloropropene	14	U
79-00-5	1,1,2-Trichloroethane	14	U
127-18-4	Tetrachloroethene	14	U
591-78-6	2-Hexanone	140	ט
124-48-1	Dibromochloromethane	14	ט
106-93-4	1,2-Dibromoethane	14	U
108-90-7	Chlorobenzene	14.	U
100-41-4	Ethylbenzene	14	υ.
95-47-6	o-Xylene	14	ט ו
179601-23-1	m,p-Xylene	14	U
100-42-5	Styrene	14	U
75-25-2	Bromoform	14	υ
98-82-8	Isopropylbenzene	14	U
79-34-5	1,1,2,2-Tetrachloroethane	14	U
541-73-1	1,3-Dichlorobenzene	14	U
106-46-7	1,4-Dichlorobenzene	14	ן ט
95-50-1	1,2-Dichlorobenzene	14	U
96-12-8	1,2-Dibromo-3-chloropropane	14	U
120-82-1	1,2,4-Trichlorobenzene	14	U
87-61-6	1,2,3-Trichlorobenzene	14	ן ט

SOM01.2

EPA SAMPLE NO.

EPA SAMPLE NO.

AGMWQW17949

			· · · · · · · · · · · · · · · · · · ·	
Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: AGRA	Mod. R	ef No.:	SDG No.: 132257	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 798	630	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 79863	0	
Level: (TRACE/LOW/MED) TRACE		Date Received: 06/	18/2009	
% Moisture: not dec.		Date Analyzed: 06/	19/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volum	e:	(uL)
Purge Volume: 25.0	(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) $\underline{ug/L}$	Q
		=======================================	========
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	ט ו
75-01-4	Vinyl chloride	0.50	U.
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	5.0	υ
75-15-0	Carbon disulfide	0.50	ן ט
79-20-9	Methyl acetate	0.50	ן ט
75-09-2	Methylene chloride	0.50	ט ו
156-60-5	trans-1,2-Dichloroethene	0.50	υ
1634-04-4	Methyl tert-butyl ether	0.50	ט ו
75-34-3	1,1-Dichloroethane	0.50	ט ו
156-59-2	cis-1,2-Dichloroethene	0.50	υ
78-93-3	2-Butanone	5.0	ט ו
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	ט
110-82-7	Cvclohexane	0.50	ט
56-23-5	Carbon tetrachloride	0.83	
71-43-2	Benzene	0.50	υ
107-06-2	1,2-Dichloroethane	0.50	υ
			_

EPA SAMPLE NO.

AGMWQW17949

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON Lab Code: STLV Case No.: AGRA Mod. Ref No.: SDG No.: 132257 Lab Sample ID: 798630 Matrix: (SOIL/SED/WATER) Water Lab File ID: 798630 (g/mL) mL Sample wt/vol: 25.0 Date Received: 06/18/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 06/19/2009 % Moisture: not dec. Dilution Factor: 1.0 (mm) GC Column: DB-624 ID: 0.53 Soil Aliquot Volume: (uL) (uL) Soil Extract Volume: (mL) Purge Volume: 25.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
==============	*======================================	=======================================	=======
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U .
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	ט ן
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	ט
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	ט
98-82-8	Isopropylbenzene	0.50	ט
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	ט
106-46-7	1,4-Dichlorobenzene	0.50	υ
95-50-1	1,2-Dichlorobenzene	0.50	υ
96-12-8	1,2-Dibromo-3-chloropropane	0.50	υ
120-82-1	1,2,4-Trichlorobenzene	0.50	ט
87-61-6	1,2,3-Trichlorobenzene	0.50	υ
1			

EPA SAMPLE NO.

AGQCTBW17959

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	1
Lab Code: STLV Case No.: AGRA	Mod. R	ef No.: SDG No.: 132257	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 798631	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 798631	
Level: (TRACE/LOW/MED) TRACE		Date Received: 06/18/2009	
% Moisture: not dec.		Date Analyzed: 06/19/2009	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume:	(uL)
Purge Volume: 25.0	(mL)		

		CONCENTRATION UNITS:	ļ
CAS NO.	COMPOUND	(ug/L or ug/kg) $\underline{ug/L}$	Q
=======================================		******	=======
75-71-8	Dichlorodifluoromethane	0.50	
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	
74-83-9	Bromomethane	0.50	
75-00-3	Chloroethane	0.50	
75-69-4	Trichlorofluoromethane	0.50	
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	8.8	
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	υ
75-34-3	1,1-Dichloroethane	0.50	ן ט
156-59-2	cis-1,2-Dichloroethene	0.50	ן ט
78-93-3	2-Butanone	0.97	J
74-97-5	Bromochloromethane	0.50	υ.
67-66-3	Chloroform	0.50	υ
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	ט
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	υ

AGQCTBW17959 Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON Case No.: AGRA Mod. Ref No.: SDG No.: 132257 Lab Code: STLV Lab Sample ID: 798631 Matrix: (SOIL/SED/WATER) Water Lab File ID: 798631 Sample wt/vol: 25.0 (g/mL) mL Date Received: 06/18/2009 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 06/19/2009 % Moisture: not dec. Dilution Factor: 1.0 GC Column: DB-624 ID: 0.53 (mm) Soil Aliquot Volume: Soil Extract Volume: (uL) (uL) Purge Volume: 25.0 (mL)

	· · · · · · · · · · · · · · · · · · ·	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
============	=======================================	=======================================	=========
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U I
78-87-5	1,2-Dichloropropane	0.50	ט ט
75-27-4	Bromodichloromethane	0.50	υ
10061-01-5	cis-1,3-Dichloropropene	0.50	ט (
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.53	
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	υ
106-93-4	1,2-Dibromoethane	0.50	υ
108-90-7	Chlorobenzene	0.50	υ
100-41-4	Ethylbenzene	0.50	υ
95-47-6	o-Xylene	0.50	υ
179601-23-1	m,p-Xylene	0.50	υ
100-42-5	Styrene	0.94	
75-25-2	Bromoform	0.50	υ
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	υ
106-46-7	1,4-Dichlorobenzene	0.50	U U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	ט
120-82-1	1,2,4-Trichlorobenzene	0.50	ע
87-61-6	1,2,3-Trichlorobenzene	0.50	U
i - 1			

SOM01.2

EPA SAMPLE NO.

EPA SAMPLE NO.

VHBLK01

Lab Name: TESTAMERICA B	URLINGTON		Contract: 8E-00302		
Lab Code: STLV Case	No.: AGRA	Mod. F	Ref No.:	SDG No.: 132257	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 798	632	
Sample wt/vol: 25.0	(g/mL) mL		Lab File ID: 79863	2	4
Level: (TRACE/LOW/MED)	TRACE		Date Received:		
% Moisture: not dec.			Date Analyzed: 06/	19/2009	
GC Column: DB-624	ID: 0.53	(mm)	Dilution Factor: 1	L.0	
Soil Extract Volume:		(uL)	Soil Aliquot Volum	ne:	(uL)
Purge Volume: 25.0		(mL)			

1			CONCENTRATION UNITS:	
	CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
	=========			
ļ	75-71-8	Dichlorodifluoromethane	0.50	Π
	74-87-3	Chloromethane		TT T
	75-01-4	Vinyl chloride	0.50	U TT
1	74-83-9	Bromomethane	0.50	
Í	75-00-3	Chloroethane	0.50	
	75-69-4	Trichlorofluoromethane	0.50	
	75-35-4	1,1-Dichloroethene	0.50	
ĺ	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	
	67-64-1	Acetone	5.0	
	75-15-0	Carbon disulfide	0.50	
ĺ	79-20-9	Methyl acetate	0.50	
I	75-09-2	Methylene chloride	0.50	
	156-60-5	trans-1,2-Dichloroethene	0.50	
	1634-04-4	Methyl tert-butyl ether	0.50	
	75-34-3	1,1-Dichloroethane	0.50	
	156-59-2	cis-1,2-Dichloroethene	0.50	U
	78-93-3	2-Butanone	5.0	ן ט
	74-97-5	Bromochloromethane	0.50	U
	67-66-3	Chloroform	0.50	ט ן
	71-55-6	1,1,1-Trichloroethane	0.50	ט ו
	110-82-7	Cvclohexane	0.50	ט ו
	56-23-5	Carbon tetrachloride	0.50	ט
	71-43-2	Benzene	0.50	ט
	107-06-2	1.2-Dichloroethane	0.50	ט
·	1 10,002			
	1			

EPA SAMPLE NO.

VHBLK01

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON SDG No.: 132257 Mod. Ref No.: Lab Code: STLV Case No.: AGRA Lab Sample ID: 798632 Matrix: (SOIL/SED/WATER) Water (g/mL) mL Lab File ID: 798632 Sample wt/vol: 25.0 Level: (TRACE/LOW/MED) TRACE Date Received: Date Analyzed: 06/19/2009 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Purge Volume: 25.0 (mL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) $\underline{ug/L}$	Q
=======================================			========
79-01-6	Trichloroethene	0.50	υ
108-87-2	Methylcyclohexane	0.50	υ
78-87-5	1,2-Dichloropropane	0.50	υ
75-27-4	Bromodichloromethane	0.50	υ
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U U
108-90-7	Chlorobenzene	0.50	ប
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	υ
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U U
541-73-1	1,3-Dichlorobenzene	0.50	υ
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	ט
96-12-8	1,2-Dibromo-3-chloropropane	0.50	ט
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U
			1

Environmental Science Division

Argonne National Laboratory 9700 South Cass Avenue, Bldg. 203 Argonne, IL 60439-4843 www.anl.gov

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC