Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

PDF Version Also Available for Download.

Description

In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd ... continued below

Creation Information

Zhou, X.J. April 30, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not thought possible only a decade ago. This revolution of the ARPES technique and its scientific impact result from dramatic advances in four essential components: instrumental resolution and efficiency, sample manipulation, high quality samples and well-matched scientific issues. The purpose of this treatise is to go through the prominent results obtained from ARPES on cuprate superconductors. Because there have been a number of recent reviews on the electronic structures of high-T{sub c} materials, we will mainly present the latest results not covered previously, with a special attention given on the electron-phonon interaction in cuprate superconductors. What has emerged is rich information about the anomalous electron-phonon interaction well beyond the traditional views of the subject. It exhibits strong doping, momentum and phonon symmetry dependence, and shows complex interplay with the strong electron-electron interaction in these materials. ARPES experiments have been instrumental in identifying the electronic structure, observing and detailing the electron-phonon mode coupling behavior, and mapping the doping evolution of the high-T{sub c} cuprates. The spectra evolve from the strongly coupled, polaronic spectra seen in underdoped cuprates to the Migdal-Eliashberg like spectra seen in the optimally and overdoped cuprates. In addition to the marked doping dependence, the cuprates exhibit pronounced anisotropy with direction in the Brillouin zone: sharp quasiparticles along the nodal direction that broaden significantly in the anti-nodal region of the underdoped cuprates, an anisotropic electron-phonon coupling vertex for particular modes identified in the optimal and overdoped compounds, and preferential scattering across the two parallel pieces of Fermi surface in the antinodal region for all doping levels. This also contributes to the pseudogap effect. To the extent that the Migdal-Eliashberg picture applies, the spectra of the cuprates bear resemblance to that seen in established strongly coupled electron-phonon superconductors such as Pb. On the other hand, the cuprates deviate from this conventional picture. In the underdoped regime, the carriers are best understood as small polarons in an antiferromagnetic, highly electron correlated background, while the doped compounds require an anisotropic electron-phonon vertex to detail the prominent mode coupling signatures in the superconducting state. Electronic vertex corrections to the electron-phonon coupling furthermore may enhance, and for certain phonons, determine, the anisotropy of the electron-phonon coupling. A consistent picture emerges of the cuprates, combining strong, anisotropic electron-phonon coupling, particular phonon modes that could give rise to such a coupling, and an electron-electron interaction modifying the el-ph vertex.

Source

  • Journal Name: Submitted to Book Chapter in Handbook of High-Temperature Superconductivity: Theory and Experiment (2007)

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-14072
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 979029
  • Archival Resource Key: ark:/67531/metadc932678

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 30, 2010

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Feb. 17, 2017, 6:33 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zhou, X.J. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors, article, April 30, 2010; United States. (digital.library.unt.edu/ark:/67531/metadc932678/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.