Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

PDF Version Also Available for Download.

Description

The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and ... continued below

Physical Description

22

Creation Information

Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa & Lai, Judy May 26, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

Physical Description

22

Source

  • 22nd Annual Western Conference, Advanced Workshop in Regulation and Competition, Hyatt Regency, Monterey, California, USA, June 17-19, 2009

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-1973E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 961597
  • Archival Resource Key: ark:/67531/metadc932665

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 26, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • July 13, 2017, 3:42 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa & Lai, Judy. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response, article, May 26, 2009; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc932665/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.