MHD modeling of magnetized target fusion experiments.

PDF Version Also Available for Download.

Description

Magnetized Target Fusion (MTF) is an alternate approach to controlled fusion in which a dense (0(1017-'8 cm-')), preheated (O(200 ev)), and magnetized (0( 100 kG)) target plasma is hydrodynamically compressed by an imploding liner. If electron thermal conduction losses are magnetically suppressed, relatively slow O(1 cm/microsecond) 'liner-on-plasma' compressions may be practical, using liners driven by inexpensive electrical pulsed power. Target plasmas need to remain relatively free of potentially cooling contaminants during formation and compression. Magnetohydrodynamic (MHD) calculations including detailed effects of radiation, heat conduction, and resistive field diffusion have been used to model separate target plasma (Russian MAGO, Field Reversed ... continued below

Physical Description

5 p.

Creation Information

Sheehey, P. T. (Peter T.); Faehl, Rickey J.; Kirkpatrick, R. C. (Ronald C.) & Lindemuth, I. R. (Irvin R.) January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Magnetized Target Fusion (MTF) is an alternate approach to controlled fusion in which a dense (0(1017-'8 cm-')), preheated (O(200 ev)), and magnetized (0( 100 kG)) target plasma is hydrodynamically compressed by an imploding liner. If electron thermal conduction losses are magnetically suppressed, relatively slow O(1 cm/microsecond) 'liner-on-plasma' compressions may be practical, using liners driven by inexpensive electrical pulsed power. Target plasmas need to remain relatively free of potentially cooling contaminants during formation and compression. Magnetohydrodynamic (MHD) calculations including detailed effects of radiation, heat conduction, and resistive field diffusion have been used to model separate target plasma (Russian MAGO, Field Reversed Configuration at Los Alamos National Laboratory) and liner implosion experiments (without plasma fill), such as recently performed at the Air Force Research Laboratory (Albuquerque). Using several different codes, proposed experiments in which such liners are used to compress such target plasmas are now being modeled in one and two dimensions. In this way, it is possible to begin to investigate important issues for the design of such proposed liner-on-plasma fusion experiments. The competing processes of implosion, heating, mixing, and cooling will determine the potential for such MTF experiments to achieve fusion conditions.

Physical Description

5 p.

Source

  • Submitted to: Proceeding of IEEE International Conference on Pulsed Power and Plasma Science "PPPS-2001"

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-3186
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 975529
  • Archival Resource Key: ark:/67531/metadc932602

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 6:05 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sheehey, P. T. (Peter T.); Faehl, Rickey J.; Kirkpatrick, R. C. (Ronald C.) & Lindemuth, I. R. (Irvin R.). MHD modeling of magnetized target fusion experiments., article, January 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc932602/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.