Flexibility in the Design of the NSLS-II Lattice

PDF Version Also Available for Download.

Description

The NSLS-II light source is a proposed 3 GeV storage ring, with the potential for ultra-low emittance [1]. The lattice design uses a 30 cell DBA structure with a periodicity of 15, with alternating long and short straight sections. All cells are tuned achromatic to maximize the emittance reduction achieved as damping wigglers are added to the ring. Recent optimization of the lattice consisted of increasing the number of possible hard X-ray beam ports using three pole wigglers, reducing the number of magnets (quadrupoles and sextupoles) and shifting the magnets to allow easier extraction of the photon beams. The impact ... continued below

Creation Information

Kramer,S.L. & Guo, W. May 4, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The NSLS-II light source is a proposed 3 GeV storage ring, with the potential for ultra-low emittance [1]. The lattice design uses a 30 cell DBA structure with a periodicity of 15, with alternating long and short straight sections. All cells are tuned achromatic to maximize the emittance reduction achieved as damping wigglers are added to the ring. Recent optimization of the lattice consisted of increasing the number of possible hard X-ray beam ports using three pole wigglers, reducing the number of magnets (quadrupoles and sextupoles) and shifting the magnets to allow easier extraction of the photon beams. The impact of the reduction of magnets on the lattice flexibility will be presented in terms of the tuning range possible for the lattice parameters: tune, emittance, chromaticity, and beta function matching to user insertion devices (IDs). This flexibility is important for optimizing the lattice linear and nonlinear properties, the dynamic aperture, and its impact on beam lifetime, as well as matching the user source requirements and for value engineering of magnets and power supplies.

Source

  • Particle Accelerator Conference (PAC 09); Vancouver, British Columbia

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--82301-2009-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 958690
  • Archival Resource Key: ark:/67531/metadc932579

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 4, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 5, 2016, 4:15 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kramer,S.L. & Guo, W. Flexibility in the Design of the NSLS-II Lattice, article, May 4, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc932579/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.