The nuclear matter problem

PDF Version Also Available for Download.

Description

We review the present statiis of the many-body theory of nuclear and pure neutron matter based on realistic models of nuclear forces, The current models of two- and three-nucleon interactions are discussed along with recent results obtained with the Brueckner and variatioual methods. New initiatives in the variational method and quantuni Monte Carlo nicthods to study pure neutron matter are described, and finally, the analytic behavior of the energy of piire neutron matter at low densities is cliscussed.

Physical Description

10 p.

Creation Information

Carlson, J. A. (Joseph A.); Cowell, S.; Morales, J.; Ravenhall, D. G. & Pandharipande, V. R. (Vijay R.) January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We review the present statiis of the many-body theory of nuclear and pure neutron matter based on realistic models of nuclear forces, The current models of two- and three-nucleon interactions are discussed along with recent results obtained with the Brueckner and variatioual methods. New initiatives in the variational method and quantuni Monte Carlo nicthods to study pure neutron matter are described, and finally, the analytic behavior of the energy of piire neutron matter at low densities is cliscussed.

Physical Description

10 p.

Source

  • Submitted to: Progress in theoretical physics, Proceedings of Yukawa Symposium 2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-0523
  • Report No.: LA-UR-02-523
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 975993
  • Archival Resource Key: ark:/67531/metadc932544

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 4:30 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Carlson, J. A. (Joseph A.); Cowell, S.; Morales, J.; Ravenhall, D. G. & Pandharipande, V. R. (Vijay R.). The nuclear matter problem, article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc932544/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.