FINAL CRADA REPORT

Vertec Biosolvents
Downers Grove IL

Argonne National Laboratory
Energy Systems Division
Argonne IL

Report Date: 2010 January 27

CRADA Number: C0102401
CRADA Title: Advanced Membrane Separation Technology for Biosolvents
CRADA Start/End Date: January 2002 – August 2004

DOE Award Number: STTR DE - FG02-01ER8613 A001
Argonne Funding: ~$244,000 (for STTR Phase I and II)

Argonne PI: Seth W. Snyder
Section Leader
Process Technology Research
Energy Systems Division
630-252-7939
seth@anl.gov

Industrial Partner: Rathin Datta, Chairman
1441 Branding Lane, Suite 100
Downers Grove, IL 60515 USA
630-960-0600
inq4vertecbio@aol.com

DOE Program Manager: Charles Russomanno
US DOE - Industrial Technologies Program
1000 Independence SW
Washington DC 20585
charles.russomanno@ee.doe.gov
202-586-7543

The submitted manuscript has been created by Argonne National Laboratory, a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government
Summary of Major Accomplishments:

Argonne and Vertec Biosolvents investigated the stability and performance for a number of membrane systems to drive the “direct process” for pervaporation-assisted esterification to produce lactate esters. As outlined in Figure 1, the target is to produce ammonium lactate by fermentation. After purification and concentration, ammonium lactate is reacted with ethanol to produce the ester. Esterification is a reversible reaction so to drive the reaction forward, the produced ammonia and water must be rapidly separated from the product. The project focused on selecting pervaporation membranes with 1) acid functionality to facilitate ammonia separation and 2) temperature stability to be able to perform that reaction at as high a temperature as possible (Figure 2). Several classes of commercial membrane materials and functionalized membrane materials were surveyed. The most promising materials were evaluated for scale-up to a pre-commercial application.

Summary of Technology Transfer Benefits to Industry:

Over 4 million metric tons per year of solvents are consumed in the U.S. for a wide variety of applications. Worldwide the usage exceeds 10 million metric tons per year. Many of these, such as the chlorinated solvents, are environmentally unfriendly; others, such as the ethylene glycol ethers and N Methyl Pyrrolidone (NMP), are toxic or teratogenic, and many other petroleum-derived solvents are coming under increasing regulatory restrictions. High performance, environmentally friendly solvents derived from renewable biological resources have the potential to replace many of the chlorinated and petrochemical derived solvents. Some of these solvents, such as ethyl lactate; d-limonene, soy methyl esters, and blends of these, can give excellent price/performance in addition to the environmental and regulatory compliance benefits.

Advancement of membrane technologies, particularly those based on pervaporation and electrodialysis, will lead to very efficient, non-waste producing, and economical manufacturing technologies for production of ethyl lactate and other esters.

Other Information/Results: (Papers, Inventions, Software, etc.)
Presentations

Results from this project were presented at:

1) R. Datta and M.P. Henry "GREEN" SOLVENTS – EMERGING MARKETS, APPLICATIONS, AND DEVELOPMENT OF MEMBRANE BASED MANUFACTURING TECHNOLOGIES. AIChE Spring Meeting, April 2004, New Orleans, LA.