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1 Introduction

There has been a long standing interest in developing nu-
merical models for the analysis of fast burst critical ex-
periments. For example, in an early model [1] the uncou-
pled thermomechanics of fissile materials was studied by
inserting prescribed temperature fields into the elastic equa-
tions. More recently, a model was developed [4] which
coupled thermomechanics of a fast burst reactor with point
reactor kinetics. Here, we present a more realistic model
which fully couples spatially-dependent neutron diffusion
and thermomechanics in order to simulate transient behav-
ior of a fast burst criticality excursion.

The problem involves solving a set of non-linear differen-
tial equations which approximate neutron diffusion, temper-
ature change, and material behavior. With this equation set
it is possible to model the transition from a supercritical to
subcritical state and corresponding material response, e.g,
possible mechanical vibration. For instance, the reactor is
put into supercritical state leading to power rise (therefore
resulting temperature rise). The rising temperature causes
the material to expand leading to an increase in neutron
leakage and thus to subcriticality.

We tested our new approach on a one-group, spherically
symmetric diffusion model accounting for prompt neutrons
only. We don’t include delayed neutrons, since the time
scales involved are too fast in order for delayed neutrons to
contribute to the system.

2 Model Equations

Our model equations are formulated in a spherically sym-
metric coordinates [1, 4, 2]. In this case, the neutron diffu-
sion is governed by
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The material displacement is modeled by the following
elastic wave equation;
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Finally, the material density is computed by considering the
mass/particle conservation in a spherical domain;

ρ = ρ0[
r

r + u
]3. (4)

The unknowns and constant parameters that appear in these
equations are defined as

φ : Neutron flux
T : Temperature
u : Material displacement
ρ : Material density
r : Spatial variable
t : Time variable
v : Average neutron speed
N : Number atom density
ν : Number of neutron produced per fission
σtr : Microscopic transport cross section
σa : Microscopic absorption cross section
σf : Microscopic fission cross section
ω : Amount of average energy released per fission
cp : Specific heat
β : Linear thermal expansion coefficient
c = [ (1−υ)ε

(1+υ)(1−2υ)ρ ]1/2 : Wave speed
υ : Poisson’s ratio
ε : Young’s modulus

We note that the material density can be written as the prod-
uct of the number atom density and the atomic mass, i.e,
ρ = NAm.
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3 Numerical Algorithm

Our numerical algorithm consists of an explicit and an im-
plicit block. The reason why we develop this kind of ap-
proach is that the time steps are impractically small(e.g, due
to the stiffness of the problem) if one wants to solve Eq. (1)
explicitly. On the other hand, one has to follow character-
istic wave speed to solve Eq. (3) due to numerical instabil-
ities. Therefore, an explicit scheme is better choice for Eq.
(3). We are currently using a first order coupling scheme,
but will be moving to a second order predictor corrector
scheme.

The numerical algorithm is executed as follows. First, Eq.
(3) is advanced in time to obtain a new density. Then the
updated density is inserted into the implicit loop to advance
Eqs. (1) and (2). Our explicit block is based on a second
order centered in time and space scheme. Our implicit block
uses a Crank-Nicolson type time and space discretization.
The non-linear solver within the implicit block is based on
the Jacobian-Free Newton Krylov method [3].

4 Numerical Results

4.1 Results of a simplified model

In this section, we present the thermomechanical behavior
of a simplified model. Here, the results are based on a sim-
plified temperature model, i.e,

∂T

∂t
= P (t)f(r), (5)

where P (t) represents a prescribed power, and f(r) corre-
sponds to the first spatial mode of the eigensolution of the
linearized diffusion equation (e.g, the diffusion coefficient
for Eq. (1) is assumed to be constant in space).

We tested three different power pulses and observed the ma-
terial response accordingly. We note that the time scale for
the power pulses is given by τ = [ 1

P (t)
∂P
∂t ]−1. And the elas-

tic wave time scale is τ elastic = R/c with R being the ra-
dius of the sphere. Figure 1 represents the material displace-
ment resulting from a fast power pulse ( e.g, τ < τ elastic).
In this case, the material doesn’t have enough time to re-
spond to the fast temperature rise. Consequently, it vibrates
after expanding to a certain level. Figure 2 is the result of a
relatively slower power pulse. We notice that the vibration
is reduced significantly. Our last test (Figure 3) corresponds
to a much slower power pulse (e.g, τ > τ elastic). This time,
we don’t see vibrations since the material can respond to the
slow temperature rise with non-vibrating expansion.
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Figure 1: Displacement resulting from a fast power pulse.
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Figure 2: Displacement resulting from a medium pulse.
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Figure 3: Displacement resulting from a slower pulse.
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Figure 4: Power pulses from the coupled model.

4.2 Preliminary results of our coupled model

In this section, we present our preliminary results from our
coupled model. We intend to see the similar mechanical
behavior as we have seen in the simplified model. Figure
4 shows two different power pulses one being faster than
the other. The corresponding material response is shown in
Figure 5. We notice that material vibration reduces when we
have slow temperature rise (slower pulse). This is consistent
with our simplified model. Again we observe an increase in
vibration when the temperature rises faster.

We would like to make some initial remarks about the per-
formance of our algorithm. Our implicit solver converges
to a given tolerance with on average three Krylov iterations
and one Newton step in smooth regions. On the other hand,
in high gradient regions (e.g, where there is a steep power
rise), the convergence takes on average 35 Krylov iterations
and two Newton steps. We note that the code performance
can be improved by preconditioning the Krylov block.

5 Conclusion and Future Work

We presented a preliminary study for the coupling of
neutron diffusion and thermomechanics. We illustrated
the mechanical response of the material to different power
(temperature) settings. We showed that if there is a fast
temperature increase in the system, then the material
expands to a certain level and starts vibrating. On the
other hand, if the temperature slowly increases, then the
material expands with significantly less vibration. Our
future work is to eliminate the time splitting error by
introducing a predictor corrector methodology. Also, we
are developing a semi-analytical solution to the coupled
system for benchmarking purposes.
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Figure 5: Displacements corresponding to the power pulses
in Figure 4.
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