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SUMMARY  20 

Massively parallel pyrosequencing of the small subunit (16S) ribosomal RNA gene has 

revealed that the extent of rare microbial populations in several environments, the “rare 

biosphere”, is orders of magnitude higher than previously thought. One important caveat 

with this method is that sequencing error could artificially inflate diversity estimates. 

Although the per-base error of 16S rDNA amplicon pyrosequencing has been shown to 25 

be as good as or lower than Sanger sequencing, no direct assessments of pyrosequencing 

errors on diversity estimates have been reported. Using only Escherichia coli MG1655 as 

a reference template, we find that 16S rDNA diversity is grossly overestimated unless 

relatively stringent read quality filtering and low clustering thresholds are applied. In 

particular, the common practice of removing reads with unresolved bases and anomalous 30 

read lengths is insufficient to ensure accurate estimates of microbial diversity. 

Furthermore, common and reproducible homopolymer length errors can result in 

relatively abundant spurious phylotypes further confounding data interpretation. We 

suggest that stringent quality-based trimming of 16S pyrotags and clustering thresholds 

no greater than 97% identity should be used to avoid overestimates of the rare biosphere. 35 

 

INTRODUCTION 

Pyrosequencing (Margulies et al., 2005) is one of the leading technologies supplanting 

Sanger sequencing for comparative genomics and metagenomics. One emerging 

application is the pyrosequencing of 16S rRNA genes (“16S pyrotags”) to profile the 40 

phylogenetic diversity within microbial communities. The large number of reads 

produced in a single pyrosequencing run provides unprecedented sampling depth, leading 

to the conclusion that the rare biosphere, i.e. the tail of the species abundance 

distribution, is substantially larger and more diverse than previously appreciated (Sogin et 

al., 2006). 45 

One caveat, however, is that the intrinsic error rate of pyrosequencing could lead 

to overestimates of the number of rare phylotypes. Unlike genome sequencing projects in 

which sequencing errors can be corrected by assembly and sequencing depth, each read 

in a pyrotag analysis is interpreted as a unique identifier of a community member and 
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therefore errors will potentially inflate diversity estimates. Sogin and coworkers, 50 

appreciating this risk, invested considerable effort to determine the error rates of first 

generation GS20 pyrosequencing using a mixture of 43 reference templates (Huse et al., 

2007). They concluded that quality filtering based on the removal of reads with one or 

more unresolved bases (N’s), errors in the barcode or primer sequence, and/or atypically 

short or long reads is sufficient to ensure per-base error rates lower than conventional 55 

Sanger sequencing while retaining >90% of the reads. Ideally, the number of operational 

taxonomic units (OTUs) from their analysis should have been 43, however they did not 

report OTU estimates of their synthetic community based on pre- or post-filtered 

pyrosequencing reads. Here we assess the effect of error rates in second generation FLX 

pyrosequencing on diversity estimates using pyrotags PCR-amplified from two regions of 60 

the 16S rRNA amplicons of a well-characterized laboratory isolate of E. coli.  

 

RESULTS 

Approximately 300-bp regions from the 5’ and 3’ ends of the 16S rRNA genes of E. coli 

MG1655 were PCR-amplified using adaptor-modified standard primer sets (A-27F/B-65 

342R and B-1114F/A-1392R) and pyrosequenced from the 27-forward or 1392-reverse 

primers, producing a total of 9,781 reads. Of these, 4,254 and 4,244 (87% of the total 

reads) could be unambiguously assigned to the 5’-forward and 3’-reverse regions of the 

16S rRNA molecule, respectively, based on the presence of error-free barcode and primer 

sequences.  70 

Read quality filtering. Reads were quality filtered by applying either the current practice 

of removing reads with unresolved bases and/or anomalous read length, or quality score-

based end-trimming at different stringencies (3% to 0.1% per base error probabilities). 

After quality filtering and trimming to a uniform length of 244 bp to enable comparisons 

across samples and regions, the resulting reads were compared to the 16S rRNA 75 

sequences from the E. coli MG1655 genome to determine error rates. The extent of 

improvement and data loss after applying such quality filtering and length trimming is 

presented in Figure 1. The 5’-forward region had, on average, 15% more reads with one 

or more errors than did the 3’-reverse region at each quality-filtering treatment (Table 1). 

This difference is due to the higher number of homopolymers in the 5’-forward region 80 
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relative to the 3’ region (62 vs. 50), because homopolymer miscounts are the major 

source of errors in pyrosequence data (Margulies et al., 2005; Huse et al., 2007).  

The lower quality of data from the 5’-forward region resulted in ~15% fewer 

usable reads than from the 3’-reverse region. The now standard practice of removing 

reads with undetermined bases (i.e., N’s) resulted in only a marginal improvement (~1%) 85 

in errorless reads. In contrast, we found that trimming based on quality scores had a more 

pronounced effect on error rate when relatively stringent per-base error probabilities were 

applied (≤0.2% producing >4% improvement in errorless reads; Table 1). The number of 

usable reads decreased sharply when the most stringent (0.1%) error probability was 

applied, indicating that the benefits of increasing the stringency of quality filtering 90 

stringency were not offset by data loss beyond 0.2% error probability for this dataset. 

Clustering evaluation. Reads were aligned and clustered at various identity thresholds 

ranging from 100% (unique sequences) down to 90% (sequences that differ by 10% are 

clustered into a single OTU) (Table 1, Fig. 1). Assuming no sequencing errors, the 

theoretical number of clusters (OTUs) should correspond to the actual number of 16S 95 

phylotypes in the sample; and in the case of E. coli MG1655, the number of unique OTUs 

should be five in the 5’-forward region and one in 3’-reverse region (Table 1). 

Remarkably, unfiltered reads overestimate this diversity by two orders of magnitude, 

producing 643 and 385 unique OTUs from the 5’-forward and 3’-reverse regions, 

respectively (Table 1, Fig. 1). Moreover, we note that increases in the size of the dataset 100 

will increase the observed number of OTUs (Fig. S1). 

In ranking the abundance of OTUs in our samples, the majority of reads possess 

the exact sequence of the corresponding region in an E. coli 16S rRNA gene; however, 

rank-abundance distributions for both regions were flanked by a long tail of OTUs 

containing one or more insertion and/or substitution errors relative to the E. coli reference 105 

sequences, and in the case of the 5’-forward region, two putative chimeric OTUs formed 

between different E. coli 16S operons (Fig. 2). A remarkable feature of the 5’-forward 

region distribution is that between the abundant error-free OTUs and the rare erroneous 

OTUs and singletons, there were several moderately abundant clusters, together 

constituting ~6% of the reads. These OTUs contain the same re-occurring homopolymer 110 

error; 6 instead of 5 guanines spanning E. coli positions 200 to 204 (Fig. 2). 
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The primary effect of clustering at different levels of sequence identity was to 

recruit erroneous OTUs and singletons into larger clusters, thereby decreasing 

exponentially the number of OTUs as identity thresholds were relaxed (Fig. 1). But even 

at the most relaxed threshold, there were two 5’-forward and one 3’-reverse OTUs that 115 

did not match E. coli. The closest matches (>98% identity) to these OTUs were members 

of the Saprospirales (Bacteroidetes), Bradyrhizobiales (Alphaproteobacteria) and 

Peptostreptococcaceae (Firmicutes). All other sequences clearly originated from E. coli 

and represent the overwhelming majority (99.97%) of the sequence data. 

 120 

DISCUSSION 

Despite a rigorous analysis of error rates in 16S rRNA pyrosequences of known 

templates (Huse et al., 2007), there have been no reports of the effect of pyrosequencing 

errors on diversity estimates (number of inferred phylotypes), and therefore, no way to 

gauge the accuracy of diversity reported in individual studies or to compare the observed 125 

variation of communities across studies. To resolve this issue, we chose to examine a 

single bacterial strain both to remove the complication of inter-species chimera formation 

(Huber et al., 2004) and to focus solely on the effect of pyrosequencing error on diversity 

estimates. Even with a fairly modest number of second generation 454 FLX reads from 

two regions of the 16S rRNA genes of Escherichia coli MG1655 (~4250 reads per 130 

region), we find that sequencing errors inflate estimates of the actual diversity by two 

orders of magnitude when considering unique reads (Fig. 1).  

This overestimation is consistent with a high percentage of reads with one or 

more errors; ~15% and ~30% of reads for the 3’-reverse (V8) and 5’-forward (V1&2) 

regions, respectively (Table 1) also detected in prior analysis of the V6 region in which 135 

18% of reads had ≥1 error (Huse et al., 2007). A large proportion of these artefacts is 

attributable to miscounted homopolymeric runs that occur in otherwise high quality 

regions of the read, and are therefore not removed by end-trimming based on quality 

scores (see below) or by culling reads with unresolved bases or anomalous lengths. 

Moreover, some of these errors are highly reproducible and produce phantom OTUs with 140 

large numbers of reads (Fig. 2), indicating that not only will false phylotypes be detected, 
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but that, in some cases, spurious phylotypes will be relatively abundant (≥1%) at least in 

the case of 100% OTUs.  

In practice, 100% sequence identity is rarely used as a threshold for defining 

OTUs, but rather, reads are usually grouped at some lower level of sequence identity 145 

(often 97% sequence identity (Stackebrandt and Goebel, 1994), which clusters sequences 

differing by as much as 3% into a single OTU). This has the effect of absorbing much of 

the observed sequencing errors. We tested a range of clustering thresholds, and as 

expected, clustering greatly reduces the overestimation of diversity (Fig. 1). However, we 

find that the current practice of removing reads with undetermined bases and/or 150 

anomalous read lengths is not adequate to ensure accurate diversity estimates at a 97% 

clustering threshold (Fig. 1). This occurs despite the comparable or lower per base error 

rates observed for 454 pyrosequencing when compared to conventional Sanger 

sequencing (Huse et al., 2007). 

Recent improvements in error estimation of pyrosequence data (Brockman et al., 155 

2008) allow the use of trimming programs, such as LUCY (Chou and Holmes, 2001), that 

are based on the per-nucleotide quality score. Only when the LUCY end-trimming 

stringency was increased to ≤0.2% per base error probability (equivalent to a phred 

quality score of ≥27), combined with clustering at ≤97% identity, did the number of 

OTUs approach the expected number of E. coli MG1655 rRNA operons. The slightly 160 

overestimated number of OTUs at these settings were, in fact, not sequencing artefacts, 

but most likely due to experimental contamination introduced during the PCR 

amplification, as seen previously with no-template PCR controls (Tanner et al., 1998). 

These contaminants represent only 0.03% of the reads obtained in the present study and 

suggest that all PCR-based surveys that use broad-specificity primers will likely suffer 165 

from similar low-level background contamination, a point worth bearing in mind when 

interpreting rare biosphere data. 

Based on our analyses, we propose the use of quality trimming to 0.2% error 

probability and a clustering threshold of 97% identity when applying 454 pyrosequencing 

to community profiling. These parameters should substantially reduce artefactual 170 

inflation of diversity estimates due to pyrosequencing errors. Raising the trimming 

stringency from 0.2% to 0.1% error probability results in a sharp decrease in usable reads 
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with little additional improvement in error reduction (Table 1). We note, however, that 

error rates are sequence specific (Fig. 1a vs. 1b) and that the spurious inflation of OTU 

numbers will increase with the size of the dataset (Fig. S1). Therefore, the proposed 175 

parameters may be insufficient to prevent overestimates of diversity using very large 

pyrotag datasets from regions of the 16S rRNA gene with a high fraction of 

homopolymers. Overall, we anticipate that the use of high stringency quality-based 

trimming and clustering thresholds ≤97% will be the simplest, least computationally 

intensive means to ensure that 16S pyrotag analyses provide accurate, high sensitivity 180 

phylogenetic profiling of microbial communities.  

MATERIALS AND METHODS 

DNA Extraction. Escherichia coli MG1655 was grown overnight at 37°C in 10 ml of 

LB and harvested by centrifugation at 10,000xg for 5 min. Cells were treated with 

proteinase K (20 mg/ml) and lysozyme (5 mg/ml), and DNA was isolated using a 185 

standard phenol-chloroform extraction, followed by ethanol precipitation.  

PCR Amplicon Library Construction and Sequencing.  One 5’ and one 3’ region of 

the 16S rRNA gene were targeted using the broad-specificity oligonucleotide primer 

pairs 27F/342R and 1114F/1392R (Stackebrandt and Goodfellow, 1991). Primer 

sequence (small caps) were modified by addition of the Roche 454 A or B adaptor 190 

sequences (lower case) and a five nucleotide identifying barcode (bolded uppercase) to 

distinguish different amplicons in the same sequencing reaction, as follows: A-27F, 5’-

gcc tcc ctc gcg cca tca gAC GTC AGA GTT TGA TCM TGG CTC AG-3’, B-342R, 5’-gcc ttg 

cca gcc cgc tca gCT GCT GCS YCC CGT AG-3’, A-1392R, 5’-gcc tcc ctc gcg cca tca gTG 

CTG ACG GGC GGT GTG TRC-3’ and B-1114F, 5’-gcc ttg cca gcc cgc tca gGC AAC GAG 195 

CGC AAC CC-3’. 20 µL PCR reactions were performed in triplicate for each primer pair, 

using 0.5 units Taq (GE Healthcare), 2 µL of supplied 10X buffer, 0.4 µL of 10 mM 

dNTP mix (MBI Fermentas), 0.6 µL of 10 mg/mL BSA (New England Biolabs), 0.2 µL 

of each 10 µM primer, and 10 ng of E. coli genomic DNA per reaction. Thermocycling 

proceeded as follows: 95ºC for 3 mins followed by 30 cycles of 95ºC for 30 sec, 55ºC for 200 

45 sec, and 72ºC for 90 sec and final extension at 72ºC for 10 min. Upon completion, the 

three reactions for each primer pair were pooled, and amplicons were purified with the 

Qiagen MinElute PCR cleanup kit and quantified on a Qubit fluorometer (Invitrogen). 
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Barcoded amplicons were mixed in equal proportions prior to emulsion PCR in 

preparation for GS FLX pyrosequencing.  205 

Informatic Analysis. Pyrosequencing flowgrams were converted to sequence reads using 

the standard software provided by 454 Life Sciences. Reads were either used directly 

(which served as the unfiltered control) or quality filtered in one of two ways: (i) reads 

with any unresolved nucleotides (N’s) were removed from the dataset, or (ii) reads were 

end trimmed based on quality scores over a range of accuracy thresholds (0.1 to 3% per 210 

base error probabilities) using LUCY (Chou and Holmes, 2001). This resulted in eight 

quality filtered datasets (Table 1). 

To compare sequences across samples, all reads in each of the datasets were 

truncated from their 3’end to 244 bp, and reads less than 244 bp were discarded. In the 

same step, barcodes and primer sequences were trimmed from the 5’ end, and any read 215 

with a sequence error in its barcode and/or primer was removed. This resulted in 5’-

forward reads spanning positions 28 to 246 (E. coli numbering), which encompasses 

variable regions 1 and 2, and the 3’ reads spanning positions 1168 to 1391, which 

encompasses variable region 8 of the 16S rRNA molecule. From the remaining uniform 

length sequences, all redundant sequences were removed yielding a dereplicated dataset 220 

containing only unique phylotypes (termed the 100% OTUs in subsequent steps).  

 Unique truncated reads were aligned using a modified Needleman-Wunsch 

algorithm (Needleman and Wunsch, 1970) and clustered along a range of identity 

thresholds (90, 95, 97, 98 and 99%) using MCL, executed with default parameters (Van 

Dongen, 2000). Sequencing errors in each of the unique reads were determined by 225 

BLAST alignment (Altschul et al., 1997) to the known 16S rRNA gene sequences of E. 

coli MG1655, assuming that any mismatches derived from the most similar of the seven 

E. coli operons. For the 5’-forward region considered, there are five unique 16S rRNA 

sequences in E. coli, and for the 3’-reverse region considered, all E. coli 16S sequences 

are identical. A subset of reads was manually inspected in ARB (Ludwig et al., 2004) to 230 

confirm the specific type and location of the BLAST-determined errors and to identify 

putative chimeras. 
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FIGURES AND LEGENDS 

 

280 
Fig. 1. Graphical representation of effect of quality filtering and clustering on diversity 

estimates of an E. coli “community” using pyrotags from a 5’-forward (1A) and 3’-

reverse (1B) region of the 16S rRNA molecule. 



Wrinkles in the rare biosphere  Kunin et al.   

 12 

 
Fig. 2. Rank abundance distribution and error types of the top 15 unique phylotypes 285 

(100% OTUs) from unfiltered 5’-forward and 3’-reverse 16S pyrotags. Colors denote 

errorless (green) reads, chimeras (blue) and reads with homopolymer length (red) or 

substitution (orange) errors.  

 

  290 
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Table 1. Effect of quality filtering and clustering on diversity estimates (OTU number), 
error rate and data loss of pyrotags amplified from two regions of E. coli MG1655 16S 
rRNA genes. Diversity estimates should be considered relative to the theoretical number 
of OTUs from E. coli. 
 295 

Read filtering Number of OTUs at % identity thresholds % errorless  % reads  
  100 99 98 97 95 90 reads used 
5' forward (V1&2)         
theoretical number 5 4 3 1 1 1   
no quality filtering 643 95 31 16 5 3 68.7 77.9 
reads with Ns removed 600 85 29 14 4 3 69.8 76.7 

3 638 92 31 13 3 3 68.9 77.7 
2 632 90 30 14 3 3 69.0 77.6 
1 609 79 24 9 3 3 69.1 77.3 

0.5 562 66 15 7 3 3 70.7 75.3 
0.2 469 30 6 3 3 3 73.2 70.8 

quality score-
based filtering 
(% per base 
error 
probability) 

0.1 372 26 5 3 3 3 77.8 57.8 
          
3' reverse (V8)         
theoretical number 1 1 1 1 1 1   
no quality filtering 385 43 13 7 5 4 84.6 94.4 
reads with Ns removed 361 40 12 6 4 3 85.3 93.6 

3 378 40 12 7 5 4 84.8 94.2 
2 368 32 10 6 5 4 85.1 93.8 
1 342 25 9 6 5 4 85.3 93.3 

0.5 310 20 8 6 5 4 87.5 89.5 
0.2 236 7 2 2 2 2 89.6 82.1 

quality score-
based filtering 
(% per base 
error 
probability) 

0.1 196 4 2 2 2 2 90.7 70.6 
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Fig. S1. Effect of pyrotag sample size on OTU number estimates from the 5’-forward and 

3’-reverse regions of E. coli 16S rRNA genes. 
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