A Tiling Game and Its Properties in the Plane
Discover the Power of Mathematics!

Kevin Bach
Department of Mathematics
College of Arts & Sciences

Faculty Mentor: Dr. Farmer Schlutzenberg
Mentor’s Department: Mathematics
Mentor’s College: Arts & Sciences

Scholars Day: April 14, 2011

1Financial support provided by a grant from the Honors College.
Definition: Combinatorial Game

A combinatorial game is a two person game of complete information, that is, it has no chance elements. Examples of combinatorial games are:
Definition: Combinatorial Game

A combinatorial game is a two person game of complete information, that is, it has no chance elements. Examples of combinatorial games are:
Definition: Combinatorial Game

Definition

A combinatorial game is a two person game of complete information, that is, it has no chance elements. Examples of combinatorial games are:
Definition: Combinatorial Game

A combinatorial game is a two person game of complete information, that is, it has no chance elements. Examples of games that are not combinatorial are:
Definition: Combinatorial Game

A combinatorial game is a two person game of complete information, that is, it has no chance elements. Examples of games that are not combinatorial are:
Definition: Tiling

A tiling of the plane is a pattern of figures that covers the entire plane with no overlaps or gaps.
Definition: Tiling

A tiling of the plane is a pattern of figures that covers the entire plane with no overlaps or gaps.
The Game

The Rules
The Game

The Rules

- The Game is played on a board with a “chessboard-like” pattern.
The Game

The Rules

- The Game is played on a board with a “chessboard-like” pattern.
- There are two players called **Blocker** and **Tiler**.
The Game

The Game is played on a board with a “chessboard-like” pattern.

There are two players called **Blocker** and **Tiler**.

Blocker moves first by playing a 2×1 tile anywhere on the board.
The Game

The Rules

- The Game is played on a board with a “chessboard-like” pattern.
- There are two players called **Blocker** and **Tiler**.
- Blocker moves first by playing a 2×1 tile anywhere on the board.
- Tiler and Blocker then alternate placing tiles adjacent to previously placed tiles until no more tiles can be placed on the board. Alternatively, we can say play continues until a maximal partial tiling is created.
The Game

The Rules

- The Game is played on a board with a “chessboard-like” pattern.
- There are two players called Blocker and Tiler.
- Blocker moves first by playing a 2×1 tile anywhere on the board.
- Tiler and Blocker then alternate placing tiles adjacent to previously placed tiles until no more tiles can be placed on the board. Alternatively, we can say play continues until a maximal partial tiling is created.
- Blocker wins if there exists less than a certain proportion of tiled squares to total squares when the game ends. i.e. The density of the maximal partial tiling is less than a value D.
The Game

The Rules

- The Game is played on a board with a “chessboard-like” pattern.
- There are two players called **Blocker** and **Tiler**.
- Blocker moves first by playing a 2×1 tile anywhere on the board.
- Tiler and Blocker then alternate placing tiles adjacent to previously placed tiles until no more tiles can be placed on the board. Alternatively, we can say play continues until a **maximal partial tiling** is created.
- Blocker wins if there exists less than a certain proportion of tiled squares to total squares when the game ends. i.e. The **density** of the maximal partial tiling is less than a value D.
- Tiler wins if that proportion of tiled squares to total squares or more is tiled. i.e. The density is greater than or equal to D.
The Game (D=1)

A Random Game

The density is $\frac{8}{9}$. Blocker Wins!
The Game (D=1)

A Random Game

[Grid showing a game board with red and green blocks]
The Game (D=1)

A Random Game
The Game (D=1)

A Random Game

The density is $\frac{8}{9}$. Blocker Wins!
A Random Game
The Game (D=1)

A Random Game
The Game \((D=1) \)

A Random Game
The Game (D=1)

A Random Game
The Game \((D=1)\)
The Game (D=1)
The Game (D=1)

A Random Game

Blocker Wins!
The Game (D=1)

A Random Game

The density is $\frac{8}{9}$. Blocker Wins!
Who has the winning strategy \((D=1)\)?

Problem (6x6 Game)

From the random game, we saw that blocker created a hole after 7 turns:
Who has the winning strategy ($D=1$)?

Problem (6x6 Game)

From the random game, we saw that blocker created a hole after 7 turns:
Who has the winning strategy \((D=1)\)?
Who has the winning strategy \((D=1)\)?
Who has the winning strategy \((D=1) \)?

Problem (6x6 Game)

From the random game, we saw that blocker created a hole after 7 turns:

![Diagram of a 6x6 game board with holes created by a green and red blocker]
Who has the winning strategy \((D=1)\)?
Who has the winning strategy \((D=1)\)?
Who has the winning strategy ($D=1$)?

Problem (6x6 Game)

From the random game, we saw that blocker created a hole after 7 turns:
Who has the winning strategy ($D=1$)?

Problem (6x6 Game)

It turns out that no matter the size of the game, blocker can create a hole:
Who has the winning strategy \((D=1)\)?

Problem (6x6 Game)

It turns out that no matter the size of the game, blocker can create a hole:
Who has the winning strategy ($D=1$)?

Problem (6×6 Game)

It turns out that no matter the size of the game, blocker can create a hole:
Who has the winning strategy \((D=1)\)?

Problem (6x6 Game)

It turns out that no matter the size of the game, blocker can create a hole:

![6x6 Game Diagram]
Who has the winning strategy \((D=1) \)?

Problem (6x6 Game)

It turns out that no matter the size of the game, blocker can create a hole:

![Diagram of a 6x6 grid with some cells shaded green and red]
Who has the winning strategy \((D=1) \)?

Problem (6x6 Game)

It turns out that no matter the size of the game, blocker can create a hole:
Who has the winning strategy \((D=1)\)?

Problem (6x6 Game)

It turns out that no matter the size of the game, blocker can create a hole:

![Diagram of a 6x6 game board with a green block creating a hole.](image)
Who has the winning strategy \((D=1)\)?
Who has the winning strategy \((D=1)\)?)

Problem (6x6 Game)

It turns out that no matter the size of the game, blocker can create a hole:
Who has the winning strategy (D=1)?

Problem (6x6 Game)

It turns out that no matter the size of the game, blocker can create a hole:
Who has the winning strategy ($D=1$)?

Problem (6×6 Game)

It turns out that no matter the size of the game, blocker can create a hole:

![Diagram of a 6x6 grid with colored cells demonstrating a blockage](image.png)
Who has the winning strategy \((D=1)\)?

Problem (6x6 Game)

It turns out that no matter the size of the game, blocker can create a hole:

![Diagram of a 6x6 grid with a hole]
Who has the winning strategy \((D=1) \)?

Problem (6x6 Game)

It turns out that no matter the size of the game, blocker can create a hole:

![Diagram of a 6x6 grid with a hole created by blocker and a red L-shaped piece at the bottom left corner.](image-url)
Problem (6x6 Game)

It turns out that no matter the size of the game, blocker can create a hole:
Who has the winning strategy \((D=1)\)?

Problem (6x6 Game)

It turns out that no matter the size of the game, blocker can create a hole:
Who has the winning strategy \((D=1)\)?
Who has the winning strategy (D=1)?

Problem (6x6 Game)

It turns out that no matter the size of the game, blocker can create a hole:

Even if the game is infinite!
Who has the winning strategy \((D=1) \)?
Who has the winning strategy \((D=1)\)?
Who has the winning strategy ($D=1$)?
Who has the winning strategy \((D=1)\)?
Who has the winning strategy \((D=1)\)?
Who has the winning strategy \((D=1)\)?
Who has the winning strategy ($D=1$)?

Problem (2x8 Game)

The only exception is when the game has exactly two rows or two columns.

![2x8 Game Board](image)
Who has the winning strategy \((D=1)\)?

Problem (2x8 Game)

The only exception is when the game has exactly two rows or two columns.
Who has the winning strategy (D=1)?

Problem (2x8 Game)

The only exception is when the game has exactly two rows or two columns.

![Game Board](image)
Who has the winning strategy \((D=1)\)?

Problem (2x8 Game)

The only exception is when the game has exactly two rows or two columns.
Who has the winning strategy \((D=1)\)?

Problem (2x8 Game)

The only exception is when the game has exactly two rows or two columns.

![Diagram showing the 2x8 game with colored cells and empty cells. Red and green cells are arranged in a specific pattern to illustrate the game's structure.](image)
Who has the winning strategy \((D=1)\)?
Who has the winning strategy \((D=1)\)?

Problem (2x8 Game)

The only exception is when the game has exactly two rows or two columns.
Who has the winning strategy \((D=1)\)?

Problem (2x8 Game)

The only exception is when the game has exactly two rows or two columns.
Who has the winning strategy \((D=1)\)?

Problem (2x8 Game)

The only exception is when the game has exactly two rows or two columns.
Who has the winning strategy \((D=1)\)?

Problem (2x8 Game)

The only exception is when the game has exactly two rows or two columns.

What if \(D<1\)?
What is the minimum density of the game in the plane?
What is the minimum density of the game in the plane?
What is the minimum density of the game in the plane?
What is the minimum density of the game in the plane?
What is the minimum density of the game in the plane?
What is the minimum density of the game in the plane?
What is the minimum density of the game in the plane?
What is the minimum density of the game in the plane?
What is the minimum density of the game in the plane?

Problem

We can achieve a minimum density of $\frac{2}{3}$ in the game. However, the actual density we will discover for the game is much higher.
More about the Game
More about the Game
More about the Game

The Density

The density here is $\frac{4}{5}$ which amounts to blocker creating a hole on every one of his turns in the limit. Therefore, we can expect the game to have a density this high or higher, since tiler can always move so that he doesn’t create a hole.
Where do we go from here?

The Future
Where do we go from here?

The Future

- Find the density of the game in the plane when both blocker and tiler are playing optimally.
Where do we go from here?

The Future

- Find the density of the game in the plane when both blocker and tiler are playing optimally.
- We can look at tiles of length greater than 2 and generalize for tiles of length n.
Where do we go from here?

The Future

- Find the density of the game in the plane when both blocker and tiler are playing optimally.
- We can look at tiles of length greater than 2 and generalize for tiles of length n.
- Look at these ideas in three dimensions or more.
The End

Thank you for coming.