UNIVERSITY OF NORTH*TEXAS

Discover the power of ideas.

Continued Fractions and Sturmian Words Discover the Power of Mathematics!

Andrew Allen ${ }^{1}$
Department of Mathematics
College of Arts \& Sciences

Faculty Mentor:
Mentor's Department:
Mentor's College:

Dr. William Cherry Mathematics
Arts \& Sciences

Scholars Day: April 14, 2011
${ }^{1}$ Financial support graciously provided by a grant from the Honors College.

What Are Continued Fractions?

A Simple Continued Fraction

The Basics

Some Terminology

- Each a_{n} term is called the $n t h$ partial quotient.
- Evaluating the fraction up to the nth partial quotient (but ignoring all of the later terms) gives a rational number, $\frac{p_{n}}{q_{n}}$. $\frac{p_{n}}{q_{n}}$ is called the $n t h$ convergent.

Partial Quotients and Convergents of π

$\frac{p_{n}}{q_{n}}=3=3.00000$

The Basics

Some Terminology

- Each a_{n} term is called the $n t h$ partial quotient.
- Evaluating the fraction up to the nth partial quotient (but ignoring all of the later terms) gives a rational number, $\frac{p_{n}}{q_{n}}$. $\frac{p_{n}}{q_{n}}$ is called the $n t h$ convergent.

Partial Quotients and Convergents of π

$\frac{p_{n}}{q_{n}}=\frac{22}{7}=3.142857$

The Basics

Some Terminology

- Each a_{n} term is called the $n t h$ partial quotient.
- Evaluating the fraction up to the nth partial quotient (but ignoring all of the later terms) gives a rational number, $\frac{p_{n}}{q_{n}}$. $\frac{p_{n}}{q_{n}}$ is called the $n t h$ convergent.

Partial Quotients and Convergents of π

$\frac{p_{n}}{q_{n}}=\frac{333}{106}=3.141509$

The Basics

Some Terminology

- Each a_{n} term is called the $n t h$ partial quotient.
- Evaluating the fraction up to the nth partial quotient (but ignoring all of the later terms) gives a rational number, $\frac{p_{n}}{q_{n}}$. $\frac{p_{n}}{q_{n}}$ is called the $n t h$ convergent.

Partial Quotients and Convergents of π

$\frac{p_{n}}{q_{n}}=\frac{355}{113}=3.141593$

Why Use Continued Fractions? Some Advantages

Quadratic Irrational Numbers
Consider $x=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{\cdots}}}}}$.

Why Use Continued Fractions? Some Advantages

Quadratic Irrational Numbers

Consider $x=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{\ldots}}}}}$.
Replacing the highlighted portion by x, we find: $x=1+\frac{1}{x}$.

Why Use Continued Fractions? Some Advantages

Quadratic Irrational Numbers

Consider $x=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{\ldots}}}}}$.
Replacing the highlighted portion by x, we find: $x=1+\frac{1}{x}$.
Now, solving for x, we find $x=\frac{1+\sqrt{5}}{2}$.

Why Use Continued Fractions? Some Advantages

Quadratic Irrational Numbers

Consider $x=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{\ldots}}}}}$.
Replacing the highlighted portion by x, we find: $x=1+\frac{1}{x}$.
Now, solving for x, we find $x=\frac{1+\sqrt{5}}{2}$.

- Similarly, any irrational solution to a quadratic equation can be represented by a periodic (repeating) continued fraction.

Why Use Continued Fractions? Some Advantages

Quadratic Irrational Numbers

Consider $x=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{\ldots}}}}}$.
Replacing the highlighted portion by x, we find: $x=1+\frac{1}{x}$.
Now, solving for x, we find $x=\frac{1+\sqrt{5}}{2}$.

- Similarly, any irrational solution to a quadratic equation can be represented by a periodic (repeating) continued fraction.
- Compare with the decimal representation, where $\frac{1+\sqrt{5}}{2}=1.6180339887498948482 \ldots$

Additional Advantage

Accuracy

Approximations using continued fractions give around twice as much accuracy as approximations using decimal numbers (for comparable sized denominators):

Additional Advantage

Accuracy

Approximations using continued fractions give around twice as much accuracy as approximations using decimal numbers (for comparable sized denominators):

Decimal: $\quad \pi \approx \frac{314}{100}=3.14$.
But $\pi-3.14 \approx 0.001592$
(i.e. three digits of accuracy)

Additional Advantage

Accuracy

Approximations using continued fractions give around twice as much accuracy as approximations using decimal numbers (for comparable sized denominators):

Decimal: $\quad \pi \approx \frac{314}{100}=3.14$.
But $\pi-3.14 \approx 0.001592$
(i.e. three digits of accuracy)

Continued Fraction: $\quad \pi \approx \frac{355}{113}$.
But $\pi-\frac{355}{113} \approx-0.00000027$
(i.e., seven digits of accuracy)

Some More Terminology: Subwords and Sturmian Words

- A word is some string of characters or digits. Here, l'll be using 0's and 1's.
- A subword is a small piece of a word.

Some More Terminology: Subwords and Sturmian Words

- A word is some string of characters or digits. Here, l'll be using 0's and 1's.
- A subword is a small piece of a word. So, the word $01010101 \ldots$ has two subwords of length two: 01 and 10

Some More Terminology: Subwords and Sturmian Words

- A word is some string of characters or digits. Here, l'll be using 0's and 1's.
- A subword is a small piece of a word. So, the word $01010101 \ldots$ has two subwords of length two: 01 and 10

Some More Terminology: Subwords and Sturmian Words

- A word is some string of characters or digits. Here, l'll be using 0's and 1's.
- A subword is a small piece of a word. So, the word $01010101 \ldots$ has two subwords of length two: 01 and 10

Some More Terminology: Subwords and Sturmian Words

- A word is some string of characters or digits. Here, l'll be using 0's and 1's.
- A subword is a small piece of a word.

So, the word $01010101 \ldots$ has two subwords of length two: 01 and 10

- A word that repeats from the beginning is called periodic. How long it takes to repeat is called the period. We see, as above, that in a periodic word, the number of subwords of a given length is at most the period.

Some More Terminology: Subwords and Sturmian Words

- A word is some string of characters or digits. Here, l'll be using 0's and 1's.
- A subword is a small piece of a word. So, the word $01010101 \ldots$ has two subwords of length two: 01 and 10
- A word that repeats from the beginning is called periodic. How long it takes to repeat is called the period. We see, as above, that in a periodic word, the number of subwords of a given length is at most the period.
- A word that isn't periodic or eventually periodic (repeating but not from the beginning), but which has as few subwords as possible is called a Sturmian word. These words have $n+1$ subwords of length n for all $n \geq 1$.

Some More Terminology: Subwords and Sturmian Words

- A word is some string of characters or digits. Here, l'll be using 0's and 1's.
- A subword is a small piece of a word. So, the word $01010101 \ldots$ has two subwords of length two: 01 and 10
- A word that repeats from the beginning is called periodic. How long it takes to repeat is called the period. We see, as above, that in a periodic word, the number of subwords of a given length is at most the period.
- A word that isn't periodic or eventually periodic (repeating but not from the beginning), but which has as few subwords as possible is called a Sturmian word. These words have $n+1$ subwords of length n for all $n \geq 1$.
- Sturmian words are important because they are the least complicated non-periodic words. They are often studied in theoretical computer science.

Using Lines to Explain Sturmian Words

- We can also draw a line to help illustrate this word.
- Draw a line with slope m and intercept b on top of a grid. Then, start where the line intersects the y-axis and move forward.
- Just write a 0 whenever the line you drew crosses a horizontal grid line...
- ... and write a 1 whenever your line crosses a vertical grid line.
- Then a line with slope $m=\frac{-1+\sqrt{5}}{2}$ and intercept $b=0$ would look like this:

Patterns in the Decimal Expansion

Another Clear Pattern

- Earlier we saw a number with a clear pattern in the continued fraction.
- Consider the number $0.12345678910 \cdots$, which is obtained by writing a decimal point followed by each integer in binary.
- The continued fraction representation of this number is
$8+\frac{1}{9+\frac{1}{1+\frac{1}{149083+\frac{1}{1+\frac{1}{1+\cdots}}}}}$

Patterns in the Decimal Expansion

Another Clear Pattern

- Earlier we saw a number with a clear pattern in the continued fraction.
- Consider the number $0.12345678910 \cdots$, which is obtained by writing a decimal point followed by each integer in binary.
- The continued fraction representation of this number is
$8+\frac{1}{9+\frac{1}{1+\frac{1}{149083+\frac{1}{1+\frac{1}{1+\cdots}}}}}$
- ... and not a pattern in sight.

Patterns Everywhere

Consider again the Sturmian word: $101101011011010110101101101 \ldots$

Patterns Everywhere

Consider again the Sturmian word: 101101011011010110101101101...

- It does not look so simple, but recall it does have a well-defined pattern to it.

Patterns Everywhere

Consider again the Sturmian word: 101101011011010110101101101...

- It does not look so simple, but recall it does have a well-defined pattern to it.
- Since this number has only 0's and 1's, let's treat it as a binary number: $0.101101011011010110101101101 .$. .

Patterns Everywhere

Consider again the Sturmian word: 101101011011010110101101101...

- It does not look so simple, but recall it does have a well-defined pattern to it.
- Since this number has only 0's and 1's, let's treat it as a binary number: 0.101101011011010110101101101 ...
- That number has the following continued fraction expansion:

Patterns Everywhere

Consider again the Sturmian word: 101101011011010110101101101...

- It does not look so simple, but recall it does have a well-defined pattern to it.
- Since this number has only 0's and 1's, let's treat it as a binary number: 0.101101011011010110101101101 ...
- That number has the following continued fraction expansion:

Patterns Everywhere

Consider again the Sturmian word: 101101011011010110101101101...

- It does not look so simple, but recall it does have a well-defined pattern to it.
- Since this number has only 0's and 1's, let's treat it as a binary number: 0.101101011011010110101101101 ...
- That number has the following continued fraction expansion:

- As it turns out, the exponents in the partial quotients follow the Fibonacci sequence: $1,1,2,3,5, \ldots$

My Research

Questions I'm Trying to Answer

- How does changing the pattern of digits in a word affect its slope and intercept?
- How does changing the slope or intercept of a word affect its continued fraction expansion?
- Are there any other words with easy to spot patterns in both their decimal and continued fraction expansion?

Slopes and Intercepts

What Changing the Slope and Intercept Does

- The effects of some slope changes are well known.
- For example, if the intercept is 0 , replacing the slope m with $1-m$ reverses every digit; that is, all of the 1 's become 0 's and vice versa.
- But what happens when you change the intercept?

Slopes and Intercepts

Picking a New Intercept

- For example, let the slope $m=\frac{-1+\sqrt{5}}{2}$
- Picking an intercept $b=0$ gives the word 1011010110110101101011
- But picking the intercept $b=\frac{1-m}{2}$ gives the word 1101011010110110101101
- There are at least two ways to explain this:

Slopes and Intercepts

Picking a New Intercept

- For example, let the slope $m=\frac{-1+\sqrt{5}}{2}$
- Picking an intercept $b=0$ gives the word 1011010110110101101011
- But picking the intercept $b=\frac{1-m}{2}$ gives the word 1101011010110110101101
- There are at least two ways to explain this:
- One way is that the change took some pairs of digits and switched them.

Slopes and Intercepts

Picking a New Intercept

- For example, let the slope $m=\frac{-1+\sqrt{5}}{2}$
- Picking an intercept $b=0$ gives the word 1011010110110101101011
- But picking the intercept $b=\frac{1-m}{2}$ gives the word 1101011010110110101101
- There are at least two ways to explain this:
- One way is that the change took some pairs of digits and switched them.
- Another way is that the change "rotated" either all or part of a word.

Slopes and Intercepts, Pt. 2

Continued Fraction Expansions

- But what effect did that have on the continued fraction expansion?

Slopes and Intercepts, Pt. 2

Continued Fraction Expansions

- But what effect did that have on the continued fraction expansion?
- The new continued fraction

Slopes and Intercepts, Pt. 2

Continued Fraction Expansions

- But what effect did that have on the continued fraction expansion?
- The new continued fraction

- The pattern is, of course...

Slopes and Intercepts, Pt. 2

Continued Fraction Expansions

- But what effect did that have on the continued fraction expansion?
- The new continued fraction

- The pattern is, of course... still waiting to be found

More Slopes and Intercepts

A Graphical Representation

- In case you were wondering, changing the intercept as we did earlier makes the word's graphical representation look like this:

- Note that the intercept change causes the lines to cross the grid lines in a slightly different order.
- This is similar to the digit switching explanation seen earlier.

Conclusion

Wrapping it up

- Numbers that have such readily apparent patterns in both their continued fraction expansion and in their decimal representation are rare.
- Because they are rare, or special, mathematicians are interested in studying numbers which do have recognizable patterns in both their decimal expansions and their continued fraction expansions.
- A better understanding of how the slope and intercept of Sturmian words relate to continued fractions may better help us predict which words have "nice" continued fraction expansions

