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Abstract 

Peristaltic transport refers to a class of internal fluid flows where the periodic 


deformation of flexible containing walls elicits a non-negligible fluid motion. It is a 


mechanism used to transport fluid and immersed solid particles in a tube or chan­

nel when it is ineffective or impossible to impose a favorable pressure gradient or 


desirous to avoid contact between the transported mixture and mechanical mov­

ing parts. Peristaltic transport occurs in many physiological situations and has 


myriad industrial applications. We focus our study on the peristaltic transport of 


a macroscopic particle in a two dimensional channel using the Lattice Boltzmann 


Method(LBM). We systematically investigate the effect of variation of the relevant 


dimensionless paJ'ameters of the system on the paJ·ticle transport. We find , among 


other results, a case where an increase of Reynolds number CaJl actually lead to 


a slight increase in particle transport, and a case where as the wall deformation 
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increases, the motion of the particle becomes non-negative only. VVe examine the 

particle behavior when the system exhibits the peculiar phenomenon of fluid tmp­

ping. Under these circumstances, the particle may itself become tmpped where 

it is subsequently transported at the wave speed, which is the ma.ximum possible 

transport in the absence of a favorable pressure gradient . Finally, we analyze how 

the particle presence affects stress, pressure, and dissipation in the fluid in hopes of 

determining preferred working conditions for peristaltic transport of shear-sensitive 

particles. We fiud that the levels of shear stress are most hazardous near the throat 

of the channel. We advise that shear-sensitive particles should be transported un­

der conditions where tmpping occurs as the particle is typically situated in a region 

of innocuous shear stress levels. 

Introduction 

A peristaltic flow occurs when a tube or channel with flexible walls transports the con­

tained fluid by progressing a series of contraction or expansion waves along the length of 

those walls. The topic of this discourse is the peristaltic transport of a macTOscopic solid 

particle immersed in the carrier fluid. 

Peristaltic transport is a process that occurs frequently both in nature and indus­

trial applications. Interest in the study of peristaltic flows was sparked by physiological 

concerns [I, 2, 3, 4]. For example, peristaltic transport occurs in t he ureter, the gastro­

intest inal tract, and in the vasomotion of blood vessels. In an industrial context, peristal­

sis may be useful when it is necessary to transport fluid while avoiding direct contact with 

mechanical moving parts. Hanin [5] suggested, "This need may arise when the fluid is 

very corrosive or toxic, ... or when the fluid carries solid particles for which a passage free 

of obstacles would be desireable." Industrial applications of peristaltic transport include 
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mining processes 'involving corrosive cyanide for gold recovery and biomedical devices to 

circulate blood between a patient and a heart-lung machine during cardiovasular surgery. 

Examples of peristaltic pumping of solid particles include egg transport in Fallopian tubes, 

food bolus transport in the gastro-intestinal tract, and calculus transport in the ureter. 

Many cases of peristalsis operate under working conditions of complete occlusion, where 

the distensible walls converge to produce zero lumen. This is the most efficient imple­

mentation of peristalsis, as the compartmentalized fluid is transported through the tube 

by positive displacement of the walls at the wave speed. However, peristaltic transport 

at moderate compression can still be an efficacious process. 

The early analytical work on the subject was instrumental in establishing a sense of 

the typical qualitative nature of peristaltic flows [1, 2, 6, 7, 8]. Cognizant that they were 

not mimicing physiological systems exactly [9], these workers derived many useful results 

by analyzing idealized situations, designating one or more physical parameters as small 

or negligible to facilitate their study. 

The following are some highlights of peristaltic pumping that were succinctly summa­

rized by Jaffrin & Shapiro [10] . The contraction of the walls produces a rising pressure 

gradient in the direction of the wave. Peristalsis is an inherently viscous process, a req­

uisite condition for the pressure gradient to occur. In light of this observation, most of 

the analytical work was performed in the limit of small or negligible inertia, though some 

authors did not employ this restriction. In this limit , the instantaneous velocity is remi­

niscent of Poiseuille flow over a cross section. When the wavelength of the deformation is 

large compared to the width of the channel, the curvature of the flow streamlines is small, 

and the pressure can be considered uniform over the cross section. The flow is aligned 

with the wave in dilated sections of the channel, while it is oriented opposite to the wave 

in contracted sections. Though the flow changes direction as the wave progresses, the 
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volume flow rate averaged over a wave period is in the same direction as the wave pro­

pogation, unless an overwhelming adverse pressure gradient is imposed on the system. 

These results were obtained for an infini te train of periodic waves, where it was proven 

sufficient to analyze a single wave wit h periodic inlet and outlet boundaries . 

Under certain circumstances, peristalt ic flows have been seen to exhibit the peculiar 

behaviors of trapping and reflux [1]. Trapping occurs in cases where the deformation is 

large, and is characterized by a bolus of flui d which travels with the wave. It can only be 

observed analytically through streamlines calculated in a frame of reference moving with 

the wave, and is visualized as a pair of recirculating vort ices. Since the streamlines are 

closed, the recirculat ing fluid must travel at the wave speed in t he average sense. Over 

the years, a semant ic debate took place over the meaning attributed to the term reflux. 

The dichotomy split t hose involved into two fact ions, one defining reflux to be the reverse 

t ransport of fluid in the averaged Eulerian sense [2, 7], and the other labeling it as the 

reverse transport of Lagrangian flui d part icles [1]. 

T hese analytical results were corroborated by several experimental endeavors [11 , 

12] . Since no experiment can rigorously simulate an 'infinite wave train ', Weinberg et 

al. [12] determined an experiment must possess three criteria to sufficiently approximate 

the situation: 1) the deformation wave must be periodic; 2) there must be an integral 

number of wavelengths between inlet and outlet resevoirs; and 3) the imposed pressure 

difference between the resevoirs must not change with time. These criteria are important 

to keep in mind as any numerical simulat ion should satisfy these condit ions as well. Hung 

& Brown [13] performed experiments of peristalt ic transport of macroscopic part icles. 

They investigated the particle transport produced from the passage of a single wave of 

deformation in an approximately two-dimensional channel. They studied the effects of 

part icle size, channel width, part icle shape, and Reynolds number. There have been 
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numerous numerical studies of peristaltic transport [14,'15, 16], where the restrictions on 

various parameters are less prohibitive than in theoretical studies. Recently there have 

been numerical studies of closed cavity peristalsis [17, 18] and solid particle suspensions 

[19, 20, 21], as well as innovative theoretical studies [22]. To the best of the authors' 

knowledge, the work of Fauci [23], utilizing the Immersed Boundary Method (IBM), was 

the only previous numerical instance of peristaltic transport of a finite-sized particle. 

In this paper, we will use the Lattice Boltzmann Method (LBM) to perform simula­

tions of the peristaltic transport of a macroscopic particle. We systematically study how 

the transport is affected by varying each of the dimensionless parameters of the system 

independently. We also discover that the periodic boundary conditions can substantially 

affect the particle transport more than anticipated in certain circumstances. We examine 

the particle behavior when introduced to a system that exhibits trapping, and discover 

that the particle can enter and remain inside the trapped fluid bolus. This allows the 

particle to be transported at the wave speed. We analyze the effect of the particle on 

stress, pressure, and dissipation in the fluid, and find that the particle enhances these 

quantities near the throat of the channel while having very little influence in the dilated 

section. 

To perform these simulations more efficiently, we have parallelized the code using 

MPI(Message Passing Interface) while augmenting the standard LBM in several respects. 

We removed the fluid from nodes that are considered interior to solid boundaries as 

suggested by Aidun [24]; adopted the method of Yu et al. [25] to achieve second-order 

accuracy on the solid boundary conditions; and implemented the Momentum Exchange 

(ME) scheme to calculate the force exerted by the fluid on solid boundaries as developed 

by Ladd [26]. The numerical method is elobarated upon in Section 2. The problem 

specification is laid out in detail in Section 3. The code is validated in Section 4 through 
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Figure 1: Lattice structure of the two-dimensional "D2Q9" lattice. 

comparisons with particle-free analytical solutions and the particle-laden simulations of 

Fauci. The results are presented in Sections 5 and 6. Finally some concluding remarks 

are discussed in Section 7. 

2 Numerical Method 

2.1 Lattice Boltzmann Model 

The Lattice Boltzmann Equation (LBE) [27, 28, 29, 30] with single relaxation time (SRT) 

approximation [31 , 32] is written: 

fieqfa (x + eacSt, t + cSt) = fa (x, t) - -
1 [fa (x, t) - ) (x, t)] , (1) 
T 

where T is the relaxation t ime, x is a discretized point in physical space, t is the discretized 

t ime, and 5t is the t ime step. fa and fSeq
) are the distribution function and corresponding 

equilibrium distribution function associated with the nth discrete velocity direction e CI:) 

respectively. In the two-dimensional nine-velocity lattice (D2Q9) model shown in Fig. I , 

the discrete velocity set is: 
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(0,0) for a = 0 

(2)ea = ~ c(cos((a- 1)7r/2),sin ((a -1 )1r/2)) for a = 1 - 4 

v'2c (cos ((2a - 1) 7r/ 4) , sin ((2a - 1) 7r/ 4)) for a = 5 - 8. 

Here the lattice speed c = Jx/Jt, where Jx is the lattice constant; both Jx and Jt are set 

to unity. The equilibrium distribution functions for this lattice are of the form: 

fleq 3 9 2 3 2] 
) = pWa [1 + d~ ea' u + 2c4 (ea ' u ) - 2c2U , (3) 

where We. is the weighting factor, p is the fluid density, and u is the fluid velocity. The 

weighting factors for this model are: 

4/9 for ex = 0 

We. = ~ 1/9 for a = 1 - 4 (4) 

1/36 for a = 5 - 8. 

The macroscopic Navier-Stokes equations can be obtained from the LBE through a 

Chapman-Enskog expansion [33] . 

2.2 Complex Boundary Conditions 

Consider the wall that is represented in Fig. 2. The particle is mapped onto the exist ing 

mesh and the boundary divides the solid boundary region Xb, from the fluid region x f. In 

his simulations of suspension flows, Ladd [26, 34] placed the wall along the link, half-way 

between the fluid and boundary node, referred to as Bounce-Back along the Link (BBL). 

This unfortunately portrays a curved boundary as a series of steps, and under certain 
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Xf! " " " 
"" fluid domain 

" " " 
Xf 

X b 

solid domain 

Figure 2: A curved wall solid boundary on a 2D lattice. x ! are fluid nodes, X b are 
boundary nodes inside the solid, and X w are the locations where the latt ice vectors 
intersect the solid wall. 

circumstances dubiously represents the actual geometry. To achieve the highest possible 

accuracy, the boundary conditions should account for the exact posit ion of the wall (x w) 

along the link. For simulations that involve moving complex boundaries, we employ the 

method of Yu et al. [25]; they have demonstrated their scheme to be both accurate and 

stable. 

According to the terminology of Fig. 2, b. represents the fraction of an intersected 

link inside the fluid region, and is given by: 

b. = IX f 

Ix ! 
- x wl 
- x bl · 

(5) 

The boundary condit ion procedure is initiated after the streaming step. One first 

calculates the a -direction distribut ion function at the posit ion X w along the intersected 

link using a sui table interpolation. The two-point interpolation scheme is 
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fn (Xw, t + Jt) = f a (Xf, t + Jt) +.0. [f(~ (Xb, t + Jt) - fa (Xf, t + Jt)]. (6) 

The no-slip condition is then fulfilled on the wall by specifying the a-direction distri­

bution function while taking the wall velocity into account: 

3 
f6: (xw, t + Jt) = fOi (Xw, t + 5t) + 2WOlPW2e6: . UW, (7) 

C 

where Pw is the fluid density at the wall. Yu et al. specified Pw = P(x f), since the 

flow is nearly incompressible. The procedure is completed by using another suitable 

interpolation to compute the desired distribution function: 

.0. 
f ii (x f) = f 6: (xw) + 1 + .0. [fii (x f + e6:) - f 6: (xw)], (8) 

where the equation is evaluated at time t + 6t. 

This method is an adaptation of the original second-order boundary condition pro­

posed by Filippova and Hanel [35], and improved upon by Mei et al [36]. The advantage 

of Yu et al.'s scheme is that it utilizes a single interpolation regardless of the value of 

.0.. The earlier schemes employed two distict equations to evaluate the interpolation, 

depending on whether .0. was above or below a threshold value. 

Due to the movement of solid boundaries over the lattice, certain fluid nodes will be 

covered by the solid walls. The fluid from these nodes is removed from the system [24, 37]. 

Conversely, a node originally in the solid region can be uncovered and become part of the 

fluid domain. When such a fluid node is recovered, the distribution function at this newly 

created node, XT) is assumed to be the average of the extrapolated distribution function 

values from a second order extrapolation scheme over all the possible directions [38]. A 
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possible direction is defined to be any direction en where both Xr + en and Xr + 2en 

are pre-existing fluid nodes; i.e. these nodes are niether solid nodes nor recovered nodes 

themselves. The extrapolation is stated 

"L{2J,.1' (xr + ej) - fo: (x r + 2ej)} 

f. ( ) .::....jE_S _________ v ex , (9)
." Xr = lVs 

where S is the set of all possible directions, and Ns is the number of elements in S. Fang 

et al. [39] has shown that the mass is approximately conserved at the boundaries. 

2.3 Force Calculation on Particle Surface 

Since the motion of an immersed solid particle and the carrier fluid are coupled, it is 

important to accurately calculate the hydrodynamic force and torque exerted on the 

particle by the fluid. The Momentum Exchange (ME) method [26, 34, 40], unique to the 

lattice Boltzmann method, is ubiquitous throughout many LBM simulations involving 

force calculation. The popularity of the method stems from its accuracy and ease of 

implementation in both two and three dimensions, facilitating one of the main advantages 

of LBM simulations in general. 

For each link connecting a fluid node to a boundary node, the fluid exerts a force 

on the particle in that particular link direction, realized as an impulse of momentum 

exchanged between the fluid and the particle. According to the terminology of Fig. 2, 

the force exerted on the particle at Xw along a relevant direction en connecting a fluid 

node at x f to a boundary node at Xb is 

F (xw, en) = en [fn (xw, t + cSt) + fii (xw , t + cSt)] , (10) 
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where fo: (xw, t + 8t) and f6: (xw, t + 8t) are computed in equations (6) and (7). The 

total force on the particle is the sum of the forces computed from each relevant link 

connecting a fluid node to a boundary node. The total torque can also be computed from 

this information [41]. Mei et al. [40] concluded that a minimum resolution of ten lattice 

units across the diameter of a fixed circular particle was necessary to accurately calculate 

the drag at Re 100; we have established a minumum resolution for this work double rv 

that which was suggested to lend additional credence to the integrity of our results. The 

translation and rotation of the particle are updated each Newtonian dynamics time step 

using a half-step "leap-frog" scheme [42, 43]. 

Due to the fact that the particle is free to move in response to the forces imposed on 

it, it was possible for it to stray very near, or even to contact the peristaltic walls. If the 

particle is situated near the wall such that there are no fluid nodes between the particle 

and the wall over some element of the particle surface, the total force on the particle 

would be miscalculated as the information necessary to apply the ME method would not 

be availible over that region. Moreover, the particle boundary should not overlap the 

wall surface. To resolve these issues, we incorporated the use of a short-range repulsive 

force applied to the particle at the location on the surface where the particle-wall gap is 

a minimum, imposed only during time steps when the minimum gap is below a threshold 

value [44, 45]. Throughout the simulations performed in this paper however, the particle 

never migrates so close to the wall, and this algorhithm is not invoked. 

Problem Specification 

The geometric configuration and nomenclature for the problem are portrayed in Fig. 3. To 

avoid confusion, we have tried to remain consistent with the variable names and definitions 
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Figure 3: Geometry and nomenclature for peristaltic flow with a transport particle. 

given by Shapiro et al [1]. A macroscopic circular particle, free to move in response to an 

applied force, is immersed in a fluid between flexible walls that are constrained to move 

in a prescribed manner, referred to hereafter as peristaltic walls. The imposed motion of 

the walls induces a fluid flow, which serves to transport the particle. While there is an 

abundance of phenomena worthy of study associated with peristaltic flows, we focus on 

this macroscopic particle transport. 

Aside from the presence of the particle, the geometry of our simulation is commonly 

seen throughout the literature. The peristaltic walls are of a sinusoidal nature, symmetric 

about the centerline of the channel. A transverse wave of deformation alternately con­

tracts and expands the wall position as it progresses in the longitudinal direction. The 

length of the domain is restricted to be an integral number of wavelengths of the periodic 

function ucfiniug the wall shape. The no-slip condition is enforced on the moving peri­

staltic walls and solid particle as detailed in Section 2.2, while the boundary conditions 

at the inlet and outlet are of a periodic type. 
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According to Fig. 3, the mean half-width of the channel is a, and the amplitude of 

wall deformation is b. The height of the top wall, measured from the centerline is h , and 

is a function of both the longitudinal coordinate x and the time t; the lateral coordinate 

is denoted as y. The corresponding velocities in the longitudinal and lateral directions 

are u and v, respectively. The peristalsis of wavelength A travels in the x-direction with 

speed c. The particle has a radius R which is restricted to be less than la - bl, allowing 

the particle to fit through the throat of the channel. If the particle were larger than the 

throat, it would be transported at the wave speed by virtue of its direct contact with the 

walls, and the problem would cease to be a fluid mechanics one. 

The relevant independent variables are made dimensionless according to 

x y. ct H=h(x,t) 
~ = -:\; T} = - , ( = -:\; (11) 

a a 

Similarly, we can introduce several other dimensionless parameters, both geometrical and 

physical: 

R ac b aV=_· Re = - Cl; <P = -; D = Ps (12)
a' V a Cl = -:\ ' 

PI 

Here V is a volume fraction; Re is the Reynolds number, with v being the fluid kinematic 

viscosity; <p is the amplitude ratio; Cl is the normalized wavenumber; and D is the ratio 

of the solid to fluid density. Though many choices are availible, it was shown by Shapiro 

et al. [1] through an order of magnitude analysis that this is the appropriate Reynolds 

number, correctly describing the relative ratio of inertial to viscous forces , for the case 

where the inertial effects are small. Our simulations are performed in the regime of small, 

but finite , Reynolds number (no larger than 0(10)), and we maintain that this remains 

the appropriate definition for Re. 
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To complete the specification of our problem, the wall shape H takes the form 

H = 1 + ¢cos 27f (~ - () . (13) 

The wall motion is constrained to be in the lateral direction only, while the wave pro­

pogates longitudinally. The walls are extensible, meaning that they can readily undergo 

tangent ial extension to accomodate the prescribed motion [46]. Jaffrin et al. [10] claimed 

that "an inextensible wall would produce virt1wliy the same .{tow except for ver'y large val­

ues of 0: (i .e., short wavelengths)." In light of this comment, we restrict our simulations 

to small 0: . 

Validation 

We will establish the veracity of our code in two steps. First we will compare the particle­

free case with its analytical solution[l, 10, 47]. Then we will compare our results for 

particle transport with the Immersed Boundary Method (IBM) simulations of Fauci[23]. 

We first use our code to simulate the particle-free case, where there are known ana­

lytical solut ions. The situation is the same as described in Section 3, except the particle 

has been removed. Velocity vectors and contours of pressure for a typical peristaltic flow 

are plotted in Fig. 4. In physical units, we set a = 0.05cm and c = O.Scm/s, while the 

physical viscosity is adjusted to yield the desired Re after 0: is specified; in corresponding 

lattice units a = 50 and T = 0.75. For this simulation ¢ = 0.25 , Re = 0.5, and 0: = 0.25 , 

yielding v = 0.02cm2 /s. Several features of the flow that were described in Section 1 can 

now be visualized, including two stagnation points on the channel centerline indicated by 

boxes marked 51 and 52 where the flow reverses direction. 
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Figure 4: Velocity vectors over contours of pressure in a typical peristaltic flow without 
a particle. Vectors of u are in the top half, and vectors of v are in the bottom. Contours 
of pressure minus the pressure when there is no wall motion ((p - Po) I (pcl a)) are plotted 
normalized by a standard pressure normalization for low Reynolds number flows according 
to the colors of the scale. 

A quantity of interest here is the time-mean volume flow rate Q calculated in the 

laboratory frame of reference. At a cross section x = xo, the instantaneous volume flow 

rate is integrated over one full period of oscillation: 

- 1 !n.T/'h .Q = T u (y, t; xo) dy dt (14) 
. 0 . 0 

where T = AIc is the period and Xo is arbitrary. The dimensionless mean flow is denoted 

8 = Qlac. 

Shapiro et al. [1] and .1affrin et al. [10] derived many results for the case where both 

Re and 0' were negligible. If in addition there is no imposed pressure gradient(referred 

to as "free pumping" because there is no flow in the absence of wall motion), 8 can be 

given as a function of amplitude ratio: 

8 = 3¢2 (15) 
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Figure 5: Time-mean volume flow rate as a function of amplitude ratio. Re 0.5, 
C\' = 1/87f . 

In Fig. 5, we compare our LBM results with the analytical solution where our geo­

metric parameters are the same as in Fig. 4 except C\' = 1/87f, Re = 1/47f, and T = 0.95, 

using ¢ as the independent variable by changing b. Re and (} should be chosen small for 

the simulation to be considered in the negligible inertia, infinite wavelength limit. Our 

simulation results agree with the analytical solution even at large amplitude ratios. 

Unfortunately there are no known analytical solutions of peristaltic particle transport. 

However , we wish to demonstrate that our results compare favorably to the IBM simu­

lations of Fauci[23], which to the best of our knowledge are the only other simulations 

of peristaltic transport of a finite particle. The simulation is specified by the parameters 

in Table 1, with both the fluid and the particle initially at rest , and the particle located 

on the centerline. In dimensional units, the positions and corresponding translational ve­

locities of the center of mass of the particle are denoted (X, Y) and CD, 11), respectively. 

Our comparison with Fauci is in physical units , but we state here their dimensionless 

analogs for future reference: 
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X=-' Y=-', U=-' V= V. (16)

,\ ' a c' c 

Domain Parameter Symbol Units Value 

Channel half-width a cm 0.05 
Amplitude b cm 0.008 
Wavelength ,\ cm 0.2 
Number of wavelengths N).. 1 
Wave speed c cm/s 0.8 
Kinematic viscosity v cm2/s 0.01 
Fluid density PI g/cm3 1.0 

Particle Parameter 

Particle density Ps g/cm3 1.0 
Particle radius R cm 0.02 
Initial x-position Xo cm 0.1 
Initial y-posision Yo cm 0.0 
Initial x-velocity Uo cm/s 0.0 
Initial y-velocity Vo cm/s 0.0 

Dimensionless Parameter 

Wave number Ct 0.25 
Amplitude ratio ¢ 0.16 
Reynolds number Re 1.0 
Volume fraction V 0.4 
Density ratio 1) 1.0 

LBM Parameter 

Relaxation t ime T lattice- time 0.95 
Grid spacing !:::. x/Jx cm/lattice-unit 0.001 
Time step !:::.t / Ji s/lattice-t ime 1.5 x 10 ­ 5 

Table 1: Parameters of the comparison with Fauci simulation: The Base Case. 

The LBM simulation is compared to the IBM result in Fig. 6 where the longitudinal 

velocity and position of the center of mass of the particle are plotted as a function of time. 

Since the particle was initially placed on the centerline of the channel, there was neither 
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lateral migration nor rotation. Fauci 's simulation data was not directly available, so Fig. 6 

contains digitized reconstructions of the plots from her paper. It can be seen that while 

the LBM and the IBM simulations are not rigorously commensurate, the results are both 

qualitatively and quantitatively within reason. Therefore we proceed with subsequent 

simulations confident their output is genuine. 

0.20 .----------------,0.5 

0.3 0.16 

0.1 0.12 
X(cm)U(C:) 

-0.1 0.08 

- LI3M - LI3M
-0.3 0.04 - - - Fauci Digitized 	 - - - Fauci Digitized 

-0.5 ,'--_-'--_....L..-_--'-_-'-_--' 	 o L'-~-~-~-~----' 

o 	 0.25 0.50 0.75 1.00 1.25 o 0.25 0.50 0.75 1.00 1.25 
time(s) time(s) 

(a) Velocity 	 (b) Position 

Figure 6: Longitudinal velocity and position of the center of mass of the particle as a 
function of time. - , LBM; - - - , digitized reconstruction from [23] 

5 Variation of Nondimensional Parameters 

In this section we shall discuss some results pertaining to peristaltic particle transport. 

There are many parameters associated with this problem, and it would be impracti­

cal to study all possible combinations. We therefore establish a base case, namely the 

comparison with Fauci described in Section 4, from which we vary each of the relevant 

dimensionless parameters from eq. (12) independently to get a sense of its influence on 

the particle transport. For a particular group of simulations , the bulk of the parameters 
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are those listed in Table 1, with the parameter of interest being varied. 

The focus of this work is the transport of the finite-sized particle. Most of the simula­

tions performed were of the nature shown in Fig. 6. Since lateral motion and rotation are 

mechanisms that decrease the longitudinal transport from its maximum value( discussed 

in Section 5.6), most of the simulations were performed with the particle init ially located 

on the symmetric channel centerline. The particle developed an oscillatory character, 

translating back and forth in the longitudinal direction. After a short while, the motion 

became steady in a periodic sense, with a net displacement in the direction the wave was 

traveling. To get a sense of the averaged transport, the output parameter for the bulk of 

our simulations is the averaged longitudinal velocity of the particle 

p 
- 1 lT-U = -;r Udt, (17) 

C.L p 0 

where Tp is the steady state particle period, not necessarily equal to the wave period, and 

normalized by the wave speed. Similar to the result described by Shapiro et al. [1] for a 

fluid particle, if a finite sized particle has a net positive displacement, it must travel for 

a time slightly greater than the wave period to find itself in the same position relative to 

the wave in order to begin the next particle period. This averaged velocity is found to 

be independent of the init ial longitudinal position of the particle relative to the wave. 

5.1 Volume Fraction: V = Ria 

The volume fraction is a measure of the size of the particle relative to the channel. V 

is designated the independent variable for this group of simulations, and is varied by 

changing the radius of the particle R. The other parameters are specified as in Table 

1. Note the condit ion that V < 1 - ¢ for the particle to fit through the throat of 
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the channel. The results for the simulations are displayed in Fig. 7. Also plotted are 

the results when the domain is extended to five and ten integral wavelengths, but sti ll 

containing only the one particle. It is evident that the results are highly dependent on the 

length of the channel given the peiodic boundary condit ions. The consequence of a finite 

domain is a departure from the assumption pervading the literature that the analysis 

of one wavelength is identical to any integral number of wavelengths. For a simulation 

where the domain is one wavelength, a periodic copy of the particle can be imagined to 

be one wavelength away, influencing the behavior of the actual particle. This influence 

diminishes as the size of the simulation is increased by virtue of the increased seperation 

between the particle and its periodic copy. This can be seen in Fig. 8 where the average 

transport of the base case is plotted for domains that are extended to include a larger 

integral number of wavelengths. 
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Figure 7: The average axial transport Figure 8: Longitudinal transport normal­
normalized by the wave speed as a func­ ized by the wave speed as a function of in­
tion of volume fraction for different channel tegral number of wavelengths for the base 
lengths. Re = 1.0, Q = 0.25, and (' = 0.16. case. 

Fauci's simulations for varying the particle size produced a result similar to the one-

wavelength plot of Fig. 7, and she concluded that the transport increases with particle 
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SIze. As evinced from the same figure, the transport may be artificially increased as a 

result of the periodic boundary, or some other factor which can mask the true influence 

of the particle size. 

It is likely there are a number of factors that compete to produce the exhibited 

behavior. One factor that acts to decrease the transport as the particle size increases is 

the mass of the particle. An increased mass would require an increased force to accelerate 

it up to a given velocity. If this is the factor that dominates, one might expect to see the 

transport decrease with size as in the case with multiple wavelengths up to V ~ 0.5. 

Another factor to consider is the work done on the fluid-particle system by the peri­

staltic walls. The fact that velocity is prescribed on the walls can be misleading when 

making a conclusion about the work they perform on the system. In a physiological sys­

tern, act ive muscular contraction combines with passive dilatation to produce the actual 

motion, where one can imagine a sensory feedback mechanism being in effect . The pre­

scribed wall velocity boundary condition implicitly delivers the requisite surface forces to 

the system in order to achieve the desired wall motion. The mechanical energy equation, 

in the absence of applied body forces , can be stated: 

a ( 12) (1 2) at P2 V + \7 . pv 2v =-v·\7p+v·(\7·r). (18) 

Here r is the viscous stress tensor(not to be confused with the LBM relaxation time) . 

The first term represents the rate of increase of kinetic energy per unit volume, the 

second term represents the convection of kinetic energy, and the last two terms represent 

the increase of kinetic energy due to the scalar product of velocity with a surface force 

imbalance. One can imagine that the shear in the fluid is increased as the particle size 

increases. Since the wall velocity is prescribed, this increases the last term in eq. (18) , 
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thereby increasing the kinetic energy of the system, both fluid and part icle, locally. This 

can be seen as a factor that increases the transport as the part icle size increases. 

Another factor to consider is the periodic boundary condit ion, which may be quant ified 

by the ratio of the size of the part icle relat ive to the length of the domain: R / N ).) .. . As we 

have mentioned above, the t ransport decreases with the length of the domain when the 

part icle size is fixed, approaching some asymptotic limit. This suggests that the influence 

of the periodic copy on t he part icle can only be felt up to a finite distance away from 

the part icle. When this is the case, R / N »)... is small. The fact that the curves in F ig. 7 

have a minimum for mult iple wavelengths suggests that this influence of the periodic copy 

increases wi th particle size, as R / N).), increases for a fixeu domain length. 

The influence of the periodic copy on t he actual particle can possibly be explained as 

follows. As the part icle t ravels through the channel, it sheds a wake behind it. According 

to boundary layer theory for simple uniform flow past a bluff body, the defect velocity of 

the wake is proport ional to the particle size, and it diminishes as x-~ . vVe are clearly not 

dealing with that idealized situation, but if there is a wake-like structure that is strong 

enough so that viscous effects cannot be considered negligible a distance on the order of 

the channel length behind the particle, the part icle may interact wi th its own wake, and 

in a sense, draft itself; thereby increasing its transport . Evidence of this proposit ion was 

not found by an alyzing the velocity in t he system as motion induced from the peristalt ic 

walls overshadowed any wake cffccts. However, Fig. 9 plots contours of velocity when the 

first order velocity calculated by simulating the same case without a part icle has been 

subtracted away. The plot demonstrates that a second order wake-like structure stretches 

across the expanse of the domain fo r the case with the larger particle, while the same 

structure does not reach as far for the case with the smaller part icle. It is possible that 

longitudinal t ransport of a part icle is increased when this structure connects through the 
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periodic boundary, even though it is most likely a second order effect. 

Another possible explanation for why the transport decreases with channel length is 

as follows. As the particle size is increased, the increased shear leads to a local increase 

of kinetic energy caused by the peristaltic walls as was mentioned above. If the length 

of the domain is small, this increased kinetic energy is convected through the periodic 

boundaries just to enter the domain from the other side, keeping the kinetic energy 

throughout the domain at a relatively high level. If the domain is large, the increased 

kinetic energy in the vicinity of the particle may be convected into the relatively low 

kinetic energy regions away from the particle, thereby lowering the kinetic energy of the 

particle. 

It is a complicated situation however, and the possibility of coupling effects among 

parameters makes it difficult to attribute this behavior to any single phenomenon. Most 

likely one of the previously mentioned factors will dominate the others for a particular 

situation. However , a variation in the particle size or domain length can cause a different 

factor to become important. The competition between these factors ultimately determines 

the transport. 

-<1.120 ·0.064 ·0.008 0.048 0.104 0.160 -0.120 ·0.045 0.029 0.104 

Figure 9: Comparison of wake-like structures behind particles of different sizes. The 
contours are colored by U - unp in lattice units, where unp is the velocity in the same 
domain and at the same time step when there is no transport particle. 
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5.2 Reynolds Number: Re = (ac/v) QI 

The Reynolds number is another interesting parameter to investigate. One may wonder if 

this is the best possible definition , because there are many options. While this definition 

was appropriate for the case without a particle, a different Reynolds number defined on 

the particle size might be more suited to characterize the situation. However, we have 

chosen to uphold the standard definition. 

In our simulations, we vary the Reynolds number by changing the value of the physical 

kinematic viscosity. The result can be seen in Fig. lOa. The plot is nearly the same as 

that of Fauci , except this plot has been extended to Re < 1, and it is in that range where 

the transport attains a maximum. The general consensus throughout the literature was 

that the effect of inertia was to decrease the transport. This assertion referred to the 

pumping capabili ty in regards to volume flow rate in the absence of a particle, but it also 

transcends the context of particle transport, as seen in the figure. 
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Figure 10: Longitudinal transport as a function of Re under various conditions. (a) ex = 0.25, 
¢ = 0.16, 1) = 0.4; (b) ex = 0.1, ¢ = 0.5, D = 0.25. 

For the most part, the transport decreases as Re increases, and approaches some 
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minimum value. Under certain circumstances however, as in Fig. lOa, a slight amount 

of inertia can actually increase the transport . .Jaffrin[47] expanded the standard parti ­

cle free, · negligible inertia equations by introducing Re as a perurbation parameter. He 

similarly concluded that inertial effects can contribute favorably to the pumping perfor­

mance under certain circumstances. Commensurate with the requirement of small Re 

for .Jaffrin 's analysis, the range where our particle achieves its maximum is conveniently 

observed only for Re ~ 1. In the plot , the maximum is achieved at Re ~ 0.6, where it 

levels off at an assymptotic value for smaller Re. The location of the maximum can be 

altered slightly by perturbing the simulation parameters by a small amount, but a dras­

tic change collapses the maximum and the transport becomes a monotonically decreasing 

function of Re as in Fig. lOb. To be more specific, if a maximum is achieved for a set of 

simulations with parameters (am, ¢m, Vm), then the set of simulations with parameters 

(am + E1, ¢m + E2, Vm + E3) will most likely also mave a maximum, where I d represents 

a small perturbation. However, if the original parameters are altered by a significant 

amount, the set of simulations will most likely not contain a maximum. In the future, 

we would like to perform a set of simulations to compose a phase diagram that specifies 

what parameter combinations yield a maximum. 

5.3 Amplitude Ratio: ¢ = b/a 

The amplitude ratio is a measure of the wall deflection relative to the width of the channel, 

and we vary ¢ in this group of simulations by varying the deformation amplitude b. For a 

given wave speed, the larger the deformation , the larger the lateral wall velocity must be 

to cover the increased distance in the same amout of time. This increases the shear which 

injects additional energy into the system as the deformation is increased similar to the 
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way increased particle size also increased shear. The transport as a function of ampli tude 

ratio is plotted in Fig. 11. It can be seen that the transport increases monotonically as 

a function of ¢. As has been mentioned throughout the literature, peristaltic pumping is 

much more cffcctive at larger amplitude ratios. 

It should be pointed out that the maximum allowable ampli tude ratio for t his particle 

size is ¢ = 0.6. However, large velocity gradients are developed as the particle passes 

through the throat of the channel as the ampli tude approaches this maximum size. As 

a result, it was not possible to simulate cases where I¢ + VI was slightly less than unity, 

as the large velocity gradients led to a Mach number which exceeded the threshold for 

stable LBM simulat ions. If 1 - V :s: ¢ :s: 1, the simulation was stable, as the particle 

could not fit through the throat to cause the large velocity gradients, and the simulat ion 

was able to handle the particle-wall contact as described in Section 2.3. In this case, the 

particle was translated at the wave speed while contacting the wall. 
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One interesting phenomenon we have observed as the amplitude ratio is increased 
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is that there is a critical point of transition, where the particle ceases to reverse its 

direction during the particle cycle. As can be seen in Fig. 12, the longitudinal velocity is 

still oscillatory, but there is a critical value of ¢ above which the instantaneous velocity of 

the particle is non-negative always. The critical amplitude ratio for this case is <Pc = 0.48. 

5.4 Nondimensional Wavenumber: a = a/)... 

The dimensionless wavenumber is the ratio of the channel half-width to the wavelength. 

It was discussed earlier that many theoretical works assumed this to be a small parameter, 

but our simulations are not necessarily encumbered by those restrictions. For this set 

of simulations, we vary the dimensionless wavenumber by varying the wavelength. We 

have plotted our results in Fig. 13. The comments of Section 5.1 should be kept in mind 

as a change in A changes the length of the domain. The transport is seen to increase 

monotonically as Q increases, and that the increase is linear beyond Q :::::: 0.3. As was 

observed in Section 5.3, there is a critical point where the instantaneous velocity becomes 

non-negative only as Q is increased, which is located at 0' = 0.45 
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Figure 13: 	 Average longitudinal velocity normalized by the wave speed as a function of 
Q. Re = 1.0, ¢ = 0.16, and V = 0.4. 
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5.5 Density Ratio: D = Psi P f 

Fig. 14a plots the transport as a function of density ratio without gravity by varying the 

solid particle density, with all other parameters fixed as in Table 1. As seen in Section 

5.1 with the case of increasing particle size for long channels, an increase of the relative 

particle density causes a decrease in the transport, though not exactly linear. The trend 

is continued for particles that are less dense than the fluid as well. Fig. 14b also plots the 

transport as a function of density ratio, but in the presence of gravity directed opposite to 

the wave propogation. The ratio of gravitational to viscous forces can yield an estimate 

of the particle behavior in the presence of the body force. The gravitational force per unit 

length is approximated as (Ps - PI )gR2. The viscous term in the Navier-Stokes equations, 

J.L \l2u, can be appoximated as J.Lc / a2. Since this is a force per unit volume, we multiply by 

a term that scales as the mean area of the domain, UA, to obtain a force per unit length. 

We also note that the resultant force on a macroscopic solid particle is typically an order 

of magnitude smaller than the individual forces as computed with the ME method. These 

forces can be combined and rearranged to give a modified Archimedes number: 

Ar* = (~ - 1)gR 
2
a 

(19)
O.l/.JcA 

The modified Archimedes number for the base case with V = 1.008 is Ar* ~ 1. This 

tells us that the gravitational force is approximately equal and opposite to the viscous 

force induced by the peristalsis. Indeed this would seem to be an accurate characterization 

as Fig. 14b demonstrates that the particle has zero average longitudinal transport for 

V = 1.008. The transport in this case is also a decreasing function of the density ratio. 

Due to the fact that the variation in particle density is two orders of magnitude smaller 

than the density itself, we would not expect to see the same type of nonlinear behavior 
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as in the gravity free case. 
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Figure 14: Longitudinal transport as a function of density ratio. a = 0.25, ¢ = 0.16, and 
Re = 1.0. (a) gx = 0 m/s2 

; (b) gx = 9.81 m/s2 

5.6 Lateral Position: Yo = Yo/a 

It has been seen that a particle which is initially placed on the symmetric centerline will 

remain there and will not rotate. If a particle is initially placed off the centerline, it will 

oscillate in both the lateral and angular directions as seen in Fig. 15. The parameters for 

these simulations are the same as in Table 1 except the initial lateral position has been 

changed to Yo = 0.1 and 0.2, respectively. In an average sense, the particle migrates back 

toward the centerline, while the magnitude of the oscillation decreases. It is also observed 

that the oscillation is larger when the particle is initially placed at a larger lateral distance. 

The same trend is seen in the angular direction with the particle approaching some 

finite angle of rotation; the angle becomes larger when the initial lateral displacement is 

increased. 

During the transient time while the offcenter particle approaches the centerline, the 
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Figure 15: Instantaneous lateral and angular positions as a function oftirne. Cl' = 0.25, ¢> = 0.16, 
1) = 0.4, and Re = 1.0. 

lateral translation and rotation cause a decrease in the longitudinal transport which would 

have otherwise been obtained by a particle that was symmetrically placed initially. It 

is assumed that these lateral and angular motions will damp out after some t ime as the 

particle settles at the stable configuration on the centerline; after which the particle would 

attain the same longitudinal transport as if it were ini t ially placed on the centerline. This 

behavior can be seen in Fig. 16, as the average longitudinal velocity is plotted at each 

particle period for different initial lateral positions. This is in contrast to the observation 

made by Hung et al. [13] who found the particle to migrate slightly away from the 3..,'(is. A 

possible explanation for this discrepency is that their experimental apparatus contained a 

single wave of deformation which acted only to increase the width of the channel from its 

unperturbed state, where our deformation wave produced sections that were both larger 

and smaller than the mean channel width. 
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Figure 16: Average longitudinal velocity at each particle period for different initial lateral 
positions. Yo increases from 0.0 through 0.5 by increments of 0.1 in the direction indicated 
by the dashed line. 

6 Phenomenonalogical Results 

In the previous section, we have seen the influence of the dimensionless parameters on the 

transport of the particle. In this section, we will observe the behavior of the system under 

the peculiar condition of trapping. We will also analyze the effects of stress, pressure, 

and dissipation in the fluid. 

6.1 Trapping 

An interesting phenomenon related to peristalt ic transport is "trapping[I] ." Trapping 

occurs only in certain circumstances, typically characterized by a large ampli tude ratio. 

When viewed in the wave frame of reference, a set of closed streamlines can be observed in 

the most dilated section of the channel. This set of streamlines represents a "bolus" offluid 

that moves with the wave in the lab frame. There is an inner circulation present inside 

the bolus, but all the contained fluid particles move with a mean velocity equal to the 

wave speed. Fig. 17 exhibits an instance where trapping has occured without a particle. 

31 




In this simulation, a = 0.1 and ¢ = 0.75; all other parameters are found in Table1 except 

the dimensional viscosity which is adjusted to yield Re = 1. Streamlines near the walls 

adopt a shape similar to the walls as they circumvent the trapped bolus. The bolus itself 

consists of two counter-rotating vortices, the combination of which resembles an ellipse 

due to the wall shape, centered under the widest part of the channel. As these streamlines 

are closed in the wave frame, this bolus of fluid travels with the wave. This phenomenon 

cannot be witnessed by streamlines portrayed in the lab frame. 

Figure 17: Trapping of fluid bolus. 

Fig. 18 depicts what occurs when a particle is introduced to a situation where trapping 

occurs. The parameters are the same as in the particle-free trapping case, and the volume 

fraction V = 0.2. In the laboratory frame, both the wave and the particle move to the 

right, though the average velocity of the particle is less than the wave speed. Due to the 

fact that these snapshots are in the wave frame of reference, the particle progresses to 

the left in the pictures. The particle is initially located to the left of the bolus, where it 

passes through the throat of the channel between t = 0.2085 and t = 0.5425, crossing the 

periodic boundary on the left and entering again from the right. The particle arrives at 

the right of the bolus, and remains there for a long t ime as it is a neutrally stable location 

in the domain. Analogous to an inverted pendulum, the particle will not remain there 

if there is some perturbation in its lateral position. In this case, the particle is seen to 
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enter the bolus, and follow the circuit specified by the streamlines. The presence of the 

particle inherently distorts the streamlines locally, but their general character remains 

intact. The particle does not escape the bolus, and develops a periodic circulation as if it 

were itself a fluid particle. As any other trapped flllid particle, the solid particle advances 

at the wave speed in the averaged sense, which is the maximum transport that is possible 

due to peristalt ic effects exclusively. It would be advisable to transport particles under 

conditions where trapping occurs for this reason. 

t = 2 .000s t=3.958s 

Figure 18: Trapping of a solid particle in the bolus. 
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Under certain circumstances, the particle may interact with the bolus in a different 

manner, depending on their associated properties. Ferrante et al. [48] studied two-way 

coupling in particle-laden tubulence, and in particular decomposed the particle-vortex 

interaction into several categories based on the relative timescales associated with the 

particle and vortex, respectively. As was described above, there are certain instances 

where the particle can enter the vortex and not ever subsequently possses sufficient inertia 

to eject itself. We have also witnessed the case where the particle does not have sufficient 

inertia to enter the bolus in the first place. We also expect there to be a case where the 

particle enters the bolus at the right, but is ejected at the left because its inertia does 

not allow it to trace the highly curved streamline. 

6.2 Viscous Stress, Pressure, and Dissipation 

It has been seen [49] that some particles which are often transported by peristalsis are 

shear-sensitive. For example, erythrocytes(red blood cells) are prone to hemolysis, the 

rupturing of the cell membrane and subsequent release of hemoglobin into the blood 

stream, when they are subjected to large shear stresses. Red blood cells have a larger 

tolerance for pressure and normal viscous stresses compared to shear stresses. In light 

of these circumstances, we can study the pressures and stresses in the vicinity of our 

macroscopic particle to gain some insight into the preferrable conditions for tansport ing 

shear or otherwise sensit ive particles. 

In the LBM, pressure is calculated using an equation of state: p = pc:;. Here Cs = 1/ J3 

is the constant speed of sound . . Inamuro [50] derived an efficient way to calculate the 

stress tensor, O"ij = -pJij +Tij, directly from the distribution functions, avoiding the need 

to take velocity gradients. For incompressible flow, the viscous or deviatoric stress tensor 
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is defined as 

Tij = 2j.LSij; Sij = ~ (aUi + aUj) . (20)
2 aXj aXi 

Here Sij is the symmetric strain-rate tensor and j.L is the fluid dynamic viscosity. Inamuro's 

equation to calculate the full stress tensor is slightly modified to give the viscous stress 

tensor : 

Tij ~ T ~ ! (POij - ~fo (eoi - u,)(eoj - Uj)) . (21) 

Here i and j are specified by x and y, and lSij is the Kronecker delta symbol. The ri.ifference 

between T, the relaxation time, and Tij should be clear from the context. 

Contours of normalized viscous stress and pressure are plotted in Figs. 19 and 20 as 

the particle passes critical locations in the channel for the base case. Notice that it is 

only necessary to plot one of the normal stresses, as T xx = -Tyy as a consequence of 

incompressibility; this statement was found to be accurate in our simulations. Relatively 

high shear stresses occur in the vicinity of the particle as it enters and leaves the throat 

region, though these stresses weaken during the instant the particle is centered in the 

throat. The shear stress on the particle is found to be a minimum when it is in the most 

dilated section of the channel. It would seem to be advisable to construct a peristaltic 

pumping apparatus for shear-sensitive particles where the intended particles are much 

smaller than the throat size, as the shear stress in that region is inversely proportional 

to the gap between the particle and the wall of the throat. There are seen to be two 

large regions of complimentary normal viscous stress. These regions alter their shape 

and enhance their magnitude as the particle passes through them. The normal viscous 

stress vanishes at the extreme lateral and longitudinal points along the particle surface. 
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The particle experiences values of high and low pressure along its surface near its 

extreme lateral points as it enters the constricting section and leaves the diverging section 

of the channel respectively. Though the lateral pressures are seen to be extreme values, 

they are symmetric and consequently do not cause any lateral motion. The difference 

in pressures on opposite longitudinal sides seems to be small, but nevertheless influences 

the particle motion more than the extreme la.teral pressures. 

-0.51 -0.26 0.00 026 0.51 -0.65 -0.30 0.04 0.39 0.14 

(a) Shear Stress: TXy/(p,c/a) (b) Normal Stress: Txx /( p,c/a) 

Figure 19: Contours of viscous stress normalized by (pc/a) in the fluid at various particle 
locations for the base case. 
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Another quantity of interest is the dissipation, ip = TijSij, which is the inner product 

of the viscous stress and strain-rate tensors and obtained by rearranging the last term 

of eq. (18). If the particle produces a large dissipation in the fluid, much of the kinetic 

energy produced from the walls is lost , which inevitably decreases the particle transport . 

As can be seen in Fig. 21 , there are two regions of increased dissipation coinsiding with 
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the locations of the lab frame centerline stagnation points that were pointed out in 

Fig. 4. As the particle enters these regions, the local dissipation is dramatically increased. 

Outside these regions however, the particle does not seem to have much effect on the total 

dissipation. 

Contours of viscous stress, pressure, and dissipation can be seen in Fig. 22 where the 

part icle is sit uated inside a trapped fluid bolus. The particle continually recirculates in 

this region, and does not pass through the throat of the channel. The region near the 

throat contains elevated levels of shear stress and dissipation, as the lab frame stagnation 

points are located much closer to the throat than in the base case. This trapped region 

is relatively inactive wit h regard to stress and dissipation compared to the throat region. 

As a result , the particle never experiences elevated levels of shear stress and does not 

increase the total dissipation of the flow much. This suggests that it would be prudent 

to transport shear-sensit ive particles under condit ions where trapping occurs. 

Conclusions 

The peristalt ic transport of a macroscopic particle was simulated using the Lattice Boltz­

mann Method. The transport was systematically studied by gleaning the change in aver­

age longitudinal transport through variation of the associated dimensionless parameters. 

The average velocity was found to increase with particle size when the channel consisted 

of only one wave length, and was found to decrease with particle size when the channel 

consisted of five and ten integral wavelengths, only to increase again for the largest par­

t icle sizes. This suggested that the periodic boundary condi t ions influenced the system 

more than anticipated, and we have speculated that the increased transport is caused by 

the particle interacting with its own wake, and in a sense, drafting itself. The transport 
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Figure 22: Contours of normalized (a)shear stress, (b) normal viscous stress, (c)pressure, 
and (d) dissipation for the case when trapping occurs. 

was found to decrease with Reynolds number, though some cases were found where the 

effect of a small amount of inertia can be to slightly increase the transport. The transport 

increased for increasing amplitude ratio, and a critical value of amplitude ratio was dis­

covered where the particle no longer changes direction as it is transported forward. The 

transport increased for increasing dimensionless wavenumber, though the periodic bound­

ary conditions may add a substantial contribution to this result as the channel length was 

varied. The transport decreased as the ratio of particle to fluid density was increased in 

the absence of gravity, but the decrease was not linear. The transport decreased linearly 

when gravity was directed opposite to the wave propogation, though the range of den­

sities simulated was small, and nonlinear cffccts were not expected. A particle that was 

initially located ofT' center was seen to exhibit both lateral and rotational oscillation. The 

oscillation amplitude damped out slowly as the particle eventually settled at the channel 
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center. 

The particle was placed in a sit uation where trapping occurred , and the part icle was 

seen to enter the t rapped bolus. Thereafter, the part icle continually recirculated while 

following t he streamlines viewed in the wave frame. Finally, the effect of the particle on 

values of stress, pressure, and dissipation in the fluid was studied. For the base case, the 

shear stress in the vicinity of the particle increased dramatically as the particle approached 

and exited the throat of the channel. The part icle enhanced the magni tude and distorted 

the shape of two regions of complementary normal stress. The pressure was enhanced in 

the area between the side walls and the particle as the part icle approached the throat, 

while it was decresed in the same area as the part icle left t he throat . Dissipation in 

the fluid was seen to increase locally when the part icle was in the vicinity of the two 

stagnation points along the centerline where the flow changes direction when viewed in 

the lab frame. For the case where the part icle circulated in the trapped bolus, the part icle 

did not have much effect on stress, pressure, or dissipation, as it was confi ned to a region 

where fluid parameters had li tt le fluctuation. 

It is recommended to t ransport part icles by peristalsis under the condit ions of t rap­

ping. Firstly, a part icle that circulates in a t rapped fluid bolus is transported , on average, 

at the wave speed, which is the maximum possible transport in the absense of a favorable 

pressure gradient. Secondly, the part icle does not experience elevated levels of shear stress 

along its surface while it is t rapped , which is an important att ribute when transport ing 

shear-sensit ive particles . Finally, the presence of the particle is not seen to increase the 

total dissipation in the fluid much compared to the case where the particle must pass 

through the throat, thereby most efficient ly utilizing the energy t ransferred to the system 

by the peristalt ic walls. 
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