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Abstract 
 

In the late 1970’s Meyer and Miller (MM) [J. Chem. Phys. 70, 3214 (1979)] presented a 

classical Hamiltonian corresponding to a finite set of electronic states of a molecular system (i.e., 

the various potential energy surfaces and their couplings), so that classical trajectory simulations 

could be carried out treating the nuclear and electronic degrees of freedom (DOF) in an 

equivalent dynamical framework (i.e., by classical mechanics), thereby describing non-adiabatic 

dynamics in a more unified manner.  Much later Stock and Thoss (ST) [Phys. Rev. Lett. 78, 578 

(1997)] showed that the MM model is actually not a ‘model’, but rather a ‘representation’ of the 

nuclear-electronic system; i.e., were the MMST nuclear-electronic Hamiltonian taken as a 

Hamiltonian operator and used in the Schrödinger equation, the exact (quantum) nuclear-

electronic dynamics would be obtained.  In recent years various initial value representations 

(IVRs) of semiclassical (SC) theory have been used with the MMST Hamiltonian to describe 

electronically non-adiabatic processes.  Of special interest is the fact that though the classical 

trajectories generated by the MMST Hamiltonian (and which are the ‘input’ for an SC-IVR 

treatment) are ‘Ehrenfest trajectories’, when they are used within the SC-IVR framework the 

nuclear motion emerges from regions of non-adiabaticity on one potential energy surface (PES) 

or another, and not on an average PES as in the traditional Ehrenfest model.  Examples are 

presented to illustrate and (hopefully) illuminate this behavior. 
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I. Introduction 

It is well appreciated that classical molecular dynamics (MD) simulations are used 

nowadays to describe an enormously wide variety of chemical dynamics phenomena in quite 

large, complex molecular systems.  In fact, it is about the only generally available theoretical tool 

available for carrying out such calculations.  The only shortcoming of the approach is that it is, 

well, classical, and thus not capable of describing any quantum mechanical (QM) aspects of the 

dynamics that may be important; quantum effects in the dynamics of molecular systems are not 

always important, but sometime they are, and unless ones description is capable of providing at 

least an approximate description of them, one may not know whether they are important or not. 

There are several ways one can proceed to try to include quantum effects in classical MD 

simulations; they are all approximations, of course, since only the Schrödinger equation for the 

complete molecular system is without approximation.  Perhaps the most common class of 

approaches are referred to as ‘mixed quantum-classical’ treatments, whereby some (usually 

small) number degrees of freedom (DOF) are described quantum mechanically, i.e., by a 

wavefunction of the coordinates of these DOF that is determined via a time-dependent 

Schrödinger equation, and the other (typically large) number of DOF are described classically, 

i.e., via coordinates and momenta that follow a classical-like trajectory.  The time-dependent 

Schrödinger equation for the quantum DOF, and classical trajectory equations for the classical 

DOF, are then integrated simultaneously, the coupling between the quantum and classical DOF 

being treated in some approximate fashion.  There are a variety of such mixed quantum-classical 

approaches, and they have been usefully applied to a variety of problems.  The primary 

shortcoming of such approaches is that there is no way to couple the quantum and classical DOF 

that is completely consistent. 
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Another strategy that has been pursued recently by several groups is to use a 

semiclassical (SC) description for all the DOF, following approaches1 developed in the early 

1970’s and applied then to small molecular systems (e.g., inelastic and reactive scattering of 

atom-diatom collisions).2  The advantage of this SC approach is that it provides a dynamically 

consistent treatment of all DOF and, in fact, includes all quantum effects at least qualitatively 

(and usually quite quantitatively).  The disadvantage of a SC treatment is that it is in general 

more difficult to implement than mixed quantum-classical approximations, though the 

resurrection3 in recent years of various initial value representations1a (IVRs) of SC has 

contributed significantly toward making SC calculations practical for large molecular systems.  

There have been several reviews4 of SC-IVR methodology and its applications in recent years, 

and I refer the reader to these for a general description of the approach and the various methods 

used to implement it. 

Most applications of SC-IVR approaches have been to molecular dynamics on one Born-

Oppenheimer potential energy surface (PES), and the question invariably arises as to whether or 

not one can use such methods to treat electronically non-adiabatic processes, i.e., those involving 

transitions between different PES’s.  The answer is ‘yes’, and such is the subject of this paper.  

Section II first reviews some relevant history and motivations of how these approaches to 

electronically non-adiabatic dynamics came about, and then Section III describes how modern 

SC-IVR implements them.  Section IV discusses some of the implications. 

Perhaps the most interesting aspect of the formulation described below is its relation to 

the classic Ehrenfest model5 for electronically non-adiabatic dynamics.  It is thus useful to 

conclude this Introduction with a brief review and discussion of this model.  It is a typical mixed 

quantum-classical approach, where here the electronic DOF are described QM’ly and the nuclear 
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DOF treated classically.  Thus if 

€ 

{Hk,k' (R)}, k,  k'=1, ...,  N  is the diabatic6 electronic matrix (as 

a function of the nuclear coordinates R) characterizing a set of N electronic states and their 

couplings, the amplitudes {ck(t)}for being in the different electronic states at time t are 

determined by the standard time-dependent Schrödinger equation, 

  

€ 

ih ˙ c k (t) =
k '=1

N

∑ H k,k ' R(t)( )ck ' (t)       (1.1) 

and the nuclear trajectory R(t) by the classical-like equations of motion, 

€ 

˙ R (t) = P(t) /µ          (1.2a) 

€ 

˙ P (t)  =  −  ∂
∂R

 Veff (R,t)       (1.2b) 

where Veff (R,t) is the Ehrenfest average of the diabatic electronic matrix,  

€ 

Veff (R,t) =
k,k '=1

N

∑ ck (t)*Hk ,k ' (R)ck ' (t)       (1.2c) 

which gives the model its name.  This is also often referred to as a ‘mean field’ model since the 

effective potential is the instantaneous average over all electronic states.  The initial conditions 

(at t = 0, say) for these equations of motion are  

€ 

ck (0) =δk ,i         (1.3a) 

where i is the initial electronic state, and 

€ 

R(0) =R0  ,  P(0) = P0        (1.3b) 

where the initial conditions (R0,P0) for the nuclear DOF are sampled from whatever distribution 

is appropriate for them. 

Perhaps the most serious shortcoming of this traditional Ehrenfest model shows up in 

regions where the electronic coupling vanishes, e.g., in the asymptotic region after a collision; 

the effective potential which determines the nuclear motion is then 
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€ 

Veff (R,t)=
k=1

N

∑ Hk,k (R)Pk (t)       (1.4)  

where 

€ 

Pk (t)  =  | ck (t) |2   is the probability of being in electronic state k, which is time-independent 

when there is no coupling.  I.e., the nuclei end up moving on an average potential energy 

surface, rather than (correctly) on one potential or another depending on the electronic state of 

the system (i.e., the electronic and nuclear DOF are not properly correlated), and this can be 

grossly unphysical if the potentials for different electronic states are very different.  One of the 

major accomplishments of the ‘surface hopping’ models introduced by Tully and Preston7 was to 

correct this unphysical feature of the Ehrenfest model. 

What is remarkable, though, is that when these ‘Ehrenfest trajectories’, i.e., those 

determined by Eqs. 1.1 and 1.2, are used within SC theory, they actually emerge (correctly) on 

one potential surface or the other, without any ‘hops’ between surfaces or any other ad hoc 

additions to the theory.8  Showing how this comes about, and demonstrating it in a simple well-

defined example, is the main purpose of this paper. 

 

II. Some History   

a. Resonance Energy Transfer; Need for a Dynamically Consistent Model. 

The F + H2 

€ 

→ HF + H reaction was one of the most thoroughly studied chemical 

reactions in the 1970’s, and one question regarding it was the extent to which F*, the 2P1/2 

excited spin-orbit state of F, is reactive.  The adiabatic PES which correlates to F* is non-

reactive, so reaction of F* with H2 requires that there be a non-adiabatic transition to the lower 

(reactive) PES.  Earliest considerations suggested9 that there should be little reaction of F*, since 

the two PES’s do not experience any obvious ‘avoided crossing’, but later quantum scattering 

calculations by Lester and Rebentrost10 showed a strong electronic-to-rotational resonance 
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energy transfer cross section due to the near match of the 404 cm-1 excitation energy in F* and 

the j = 0

€ 

→ 2 rotational excitation energy of H2 (~360 cm-1).  The physical picture is thus that the 

electronic transition to the lower, reactive PES takes place with H2 being rotationally excited, 

and then the reaction occurs, 

€ 

F *+H2  ( j = 0)→ F +H2  ( j = 2)→ HF +H   

The near resonance of the electronic-rotational energy transfer thus enhances the non-adiabatic 

transition and leads to significant reaction of F*.  There is a similar near electronic-to-vibrational 

resonance energy transfer in Br* + H2(v=0) 

€ 

→ Br + H2 (v=1); i.e., when Br* is quenched in 

collision with H2, essentially all the product H2 emerges in the v=1 excited state,11,12 because the 

spin-orbit splitting in Br (3500 cm-1) is not so far from the vibrational quantum of H2  

(~4000 cm-1). 

However the simplest type of surface-hopping model7 (a kind of mixed-quantum classical 

approximation) does not describe this kind of resonance enhancement.  This is easiest to 

illustrate13 with regard to the Br* + H2 example.  If r and R denote the H2 vibrational and the H2-

Br translational coordinates, respectively (and ignoring any other coordinates in this pedagogical 

discussion), let r(t) and R(t) be their values along a classical trajectory, moving on BO PES 

W1(r,R), say.  Within the Landau-Zener-Stuckelberg approximation14 for electronically non-

adiabatic transitions, one monitors the electronic energy difference to PES W2, say, as a function 

of time along the nuclear trajectory 

€ 

ΔW (t) =W2 r(t),R(t)( )−W1 r(t),R(t)( ),      (2.1) 

and times at which 

€ 

ΔW(t) experiences a local minimum signify ‘avoided crossings’ of PES’s W1 

and W2, and a time at which a transition between them can occur; if tn is such a time, the 

transition probability at this time is given approximately by15 
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€ 

Pn ≅ exp −  4
3
ΔWn 2ΔWn /Δ ˙ ̇ W n /h

 

  
 

  
      (2.2) 

There are in fact many such local minima in 

€ 

ΔW(t) since 

€ 

ΔW depends on the vibrational 

coordinate r (when the collision partners are close to one another), and r(t) is an oscillatory 

function of time, 

€ 

r(t) ~ cos(ωt)          (2.3)  

where 

€ 

ω  is the H2 vibrational frequency.  Fig. 1 shows a sketch of 

€ 

ΔW(t) for two situations, 

indicating the various times where local minima (avoided crossings) occur.  A purely classical 

treatment would give the net transition probability as the sum of making the transition at the 

various times tn (ignoring, for this discussion, recrossings from PES W2 back to W1) 

€ 

P2,1
CL  =  

n
∑ Pn          (2.4) 

A SC treatment,15 a la Stuckelberg, however would first construct the net amplitude (S-matrix 

element) for making the transition, with the transition probability being its square modulus 

  

€ 

S2,1 ≅
n
∑ Pn

1/2e−iΔWntn /h         (2.5a) 

 

€ 

P2,1 = S2,1
2
          (2.5b) 

where the phase associated with each avoided crossing has been approximated as the electronic 

energy gap times the time of the transition.  Noting that the times tn are spaced approximately by 

the period of the H2 vibration, i.e.,  

€ 

tn ≅ constant  +  n(2π /ω)        (2.6) 

so that 

  

€ 

S2,1 ≅
n
∑ Pn

1/2 exp (−2πinΔWn /hω)       (2.7) 
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If the collision were slow, so that many avoided crossings contributed with ~ equal probabilities 

Pn and energy gaps 

€ 

ΔWn (e.g., as depicted in Fig 1a), the sum in Eq. 2.7 would be strongly 

peaked when   

€ 

ΔW /hω  

€ 

≅  an integer [recall the Fourier sum identity  

  

€ 

n=−∞

∞

∑ e2πinz =
l

∑ δ(z − l) ]       (2.8) 

In more realistic situations there are not an infinite number of avoided crossing encounters (e.g., 

as sketched in Fig 1b), and the probability factors are not all the same, so the idealized delta 

function peak is broadened but still has the same qualitative effect of enhancing the transition 

probability near resonance (when the electronic energy gap matches the vibrational quantum).  

Viewed semiclassically, therefore, the enhancement of the electronic-vibrational energy transfer 

due to resonance energy transfer is an interference effect;13 neglecting the interference (or 

coherence) between the various ‘hops’, Eq. 2.4, misses it.     

One may ask why is this the case?  I.e., why is it necessary to go to a semiclassical 

description in order to obtain the correct resonance effect, when we know full well that 

resonance energy transfer is a perfectly classical phenomenon (recall the demonstrations in 

elementary physics class of two coupled pendulums, when their frequencies are similar)?  It is 

because of the above mixed quantum-classical description of the system:  electronic DOF are 

treated QM’ly, as discrete quantum states, while the vibration (and translation) DOF was treated 

classically, as a coordinate following a trajectory, and the inconsistency inherent in describing 

different DOF differently requires a SC treatment in order to describe an effect that would be 

described correctly classically if all the DOF were treated dynamically consistently. 
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b. A Classical Model for Electronic Degrees of Freedom. 

 Considerations such as these led to the conclusion that if one wished to employ a 

classical description for the nuclear DOF — so that classical MD simulation methods could be 

used for them — one needed also to have a classical description of the electronic DOF.16-18  This 

does not necessarily mean taking the coordinates and momenta of actual electrons as classical 

variables — although that is appropriate in some cases, such as processes involving high 

Rydberg states — but rather in finding a dynamical model that characterizes the collective 

electronic DOF corresponding to a given finite set of electronic states. 

Several heuristic ways were used to construct such classical models for a given set of 

electronic PES’s and their couplings; for the case of two electronic states, all the approaches 

gave the same classical model.  E.g., one of these16 exploited the fact that a two-state system is 

equivalent to a spin ½ system, and then the spin was treated as a classical angular momentum.  

The most general approach, though, was the one of Meyer and Miller18 (MM), whereby the 

electronic amplitudes {ck(t)} in Eq. 1.1 were written in terms a pair of action-angle variables 

{nk(t), qk(t)} as follows 

€ 

ck (t) = nk (t)  e−iqk (t )         (2.9) 

The expectation value of the electronic Hamiltonian was then thought of a classical (time-

dependent) Hamiltonian of the these action-angle variables, 

  

€ 

Hel (n,q;t) ≡
k,k '=1

N

∑ ck (t)*Hk ,k ' R(t)( )ck ' (t)  

      

€ 

=
k=1

N

∑ nkHk,k R(t)( ) 

€ 

+  2
k<k '=1

N

∑ nknk ' cos(qk − qk ' )Hk,k ' R(t)( ) (2.10) 

where it has been assumed that Hk,k’ is a real symmetric matrix.  It is not hard to show that 

Hamilton’s equations for these (real valued) action-angle variables 
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€ 

˙ q (t) =  ∂Hel (n,q;t)
∂n

 

  

€ 

˙ n (t) =  −  ∂Hel(n,q;t)
∂q

       (2.11)  

are identical to the time-dependent Schrödinger equation, Eq. 1.1, for the (complex valued) 

amplitudes.  (Though we were not aware of it at the time, this classical analog for an N-state 

quantum system — i.e., Eqs. 2.9 – 2.11 — had been used much earlier by Dirac19 for different 

purposes, namely to derive the Golden Rule of time-dependent perturbation theory for treating 

absorption and emission of radiation.)  Several ad hoc modifications were then added to Eq. 

2.10:  based on SC notions (i.e., the ‘Langer correction’) the action variables nk were modified as 

€ 

nk → nk +
1
2

         (2.12) 

and then the term 

€ 

1
2
k
∑ Hk,k  subtracted from the Hamiltonian so that integer values of the actions 

would be yield one specific PES when the coupling vanished; the resulting ‘classical electronic 

Hamiltonian’ thus becomes 

  

€ 

Hel (n,q;t)=
k
∑ nkHk ,k R(t)( )  

€ 

+  2
k<k '
∑ (nk + 1

2 )(nk ' +
1
2 ) cos(qk − qk ' )Hk ,k ' R(t)( )  (2.13a) 

and adding to this the nuclear kinetic energy 

€ 

P2 / 2µ  (assuming for simplicity here that all 

nuclear coordinates have the same mass m) yields the full classical nuclear (translation, rotation, 

vibration)-electronic Hamiltonian for the nuclear and electronic DOF, 

    

€ 

H (P,R,n,q) = P2 / 2µ +Hel n,q;R( )      (2.13b) 

The electronic action variables {nk] play the same role, and have the same 

classical/semiclassical interpretation, as those for vibrational and rotational DOF.  E.g., 

electronic state k, say, corresponds to nk = 1, with the actions (SC ‘quantum numbers’) for all 
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other electronic ‘modes’ being 0.  It is easy to show (by using Hamilton’s equations) that the sum 

of all the electronic actions is a constant of the motion for the Hamiltonian of Eq. 2.13,  

€ 

d
dt k=1

N

∑ nk (t) = 0        (2.14) 

I.e., the relevant dynamics takes place in the ‘polyad’ of 1 quantum of excitation in the N 

electronic DOF. 

The first applications of this model Hamiltonian [Eq. 2.13] took place at the ‘quasi-

classical’ (QC) level,20 whereby one computes classical trajectories — here for the electronic and 

nuclear DOF, via Hamilton’s equations — with quantized initial conditions for the bounded 

DOF, i.e., the rotational, vibrational, and now also electronic DOF.  This prescription chooses 

the initial action variables of the bounded DOF as integers, corresponding to the chosen initial 

state, and the conjugate angle variables as random [in the interval (0,2π )], and the final values 

of the action variables are ‘binned’ (or histogrammed) into quantum number bins to determine 

the distribution of final quantum states.  As with rotation and vibration, where the initial 

conditions are specified in action-angle variables but transformed21 into Cartesian coordinates 

and momenta for the actual numerical trajectory calculation, this was also done for the electronic 

DOF.  The Cartesian electronic-oscillator variables are defined in the usual way in terms of their 

action-angle variables, 

€ 

xk = 2nk +1cos qk  

€ 

pk = − 2nk +1sin qk          (2.15) 

and in terms of them the nuclear-electronic Hamiltonian of Eq. 2.13 becomes 

     

€ 

H (P,R,p,x) = P2 / 2µ  

€ 

+  
k=1

N

∑ 1
2

(pk
2 + xk

2 −1)Hk ,k (R)  

€ 

+  
k<k '=1

N

∑ (pk pk ' + xk xk ' )Hk ,k ' (R)   . (2.16) 
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It is of course quite a ‘stretch’ for the quasi-classical model to treat the electronic DOF this way, 

for the electronic ‘quantum numbers’ nk can never be anything other than 0 or 1 (since their sum 

= 1), and it is well known that the QC treatment for vibration and rotation, say, works best when 

many quantum states are populated by the dynamics and their quantum numbers are >> 0.  

Nevertheless, a variety of applications were carried out this way in the late 1970’s and gave quite 

reasonable results.  E.g., Figure 2 shows a comparison22 of the 3d non-reactive quenching of F* 

by collision with H2(j = 0), demonstrating the resonance effect discussed above; i.e., most of the 

product has H2 excited to the j = 2 state.  And the results are in reasonable agreement with Lester 

and Rebentrost’s10 coupled-channel quantum scattering calculations.  Fig. 3 shows a similar 

comparison23 for Br* + H2 (v = 0), where the cross for forming H2 in the v = 1 state is much 

larger than that for v = 0.  Fig. 4 shows the cross section for charge transfer, Na + I 

€ 

→ Na+ + I-, a 

classic ionic-covalent curve-crossing problem,24 again with quite reasonable agreement with 

exact QM calculations.25  Probably one feature that makes the QC version of this nuclear-

electronic model work as well as it does, is that the electronic DOF are essentially harmonic 

oscillators, as is clear from the form of the Hamiltonian Eq. 2.16, and it is well known that 

classical and semiclassical descriptions often work fortuitously well for harmonic systems even 

when the quantum numbers (actions variables) are small.  Still, one cannot always expect this 

QC version of the model to work as well as the examples noted here.  

One possible way to improve matters is to implement the model semiclassically, i.e., 

within the framework of ‘classical S-matrix’ theory.1a  Here one finds specific classical 

trajectories (of the full nuclear-electronic system as above) that begin and end with integer values 

of the action variables of all bounded DOF, e.g., vibrational, rotational, and electronic, of the 

nuclear-electronic Hamiltonian, and can express the S-matrix (the matrix of transition 
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amplitudes) in terms of them.  This was done for a model problem in the original MM18 paper, 

and was indeed seen to be much more accurate than the QC implementation.  The difficulties of 

applying the classical S-matrix approach to systems with many DOF, however, prevented further 

applications with it.  The next Section, however, discusses more recent advances using IVR 

methods to implement the SC approximation. 

There are two final points worth pointing out before concluding this lengthy historical 

review.  First, it is possible to use an adiabatic representation rather than a diabatic representation 

as has been done so far.  This is a straight-forward classical canonical transformation and was 

carried out in the Appendix of the MM paper.  Using Cartesian electronic variables, as in Eq. 

2.16 (though here they are ‘new’ electronic variables, for which a different notation is not used 

since it is unnecessary for present purposes), the adiabatic nuclear-electronic Hamiltonian is 

€ 

H (P,R,p,x) =
1
2
|P+ΔP |2   

€ 

+  
k=1

N

∑ 1
2

(pk
2 + xk

2 −1)Ek (R)   ,   (2.17a) 

where {Ek(R)} are the Born-Oppenheimer PES’s (i.e., the eigenvalues of the diabatic electronic 

matrix {Hk,k’(R)}), |

€ 

ψ k> denote the BO electronic wavefunctions (the eigenvectors of the 

diabatic electronic matrix), and 

€ 

ΔP is given by 

  

€ 

ΔP =
k<k '=1

N

∑ h(pk 'xk − pkxk ' ) <ψk |
∂ψk '

∂R
>   .     (2.17b) 

One notes that this classical nuclear-electronic Hamiltonian has the same form as the QM 

version, involving the same non-adiabatic coupling elements which characterize the quantum 

non-adiabatic dynamics. 

Finally, it is important to emphasize that the classical trajectories which result from this 

classical nuclear-electronic Hamiltonian [Eq. 2.16] are essentially identical to the Ehrenfest 

equations, Eqs. 1.1 and 1.2 above.  (This is easy to verify by writing out Hamilton’s equations 
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from Eq. 2.16, and noting the expression for the electronic amplitudes in terms of the Cartesian 

electronic variables, 

€ 

ck = (xk + i* pk )/ 2  ) .  I say ‘essentially’ equivalent because there is a slight 

difference due to the modification made in Eq. 2.12, which introduces a zero point energy (ZPE) 

into the electronic DOF; without this ZPE the trajectories would not depend on the initial values 

the electronic angle variables, so for a given electronic state (and given initial conditions of the 

nuclear DOF) there would be only one trajectory.  With this modification, there is an ensemble 

of trajectories for a given electronic state, so that even at the primitive quasi-classical level of 

binning the final electronic actions, one has different nuclear trajectories for different final 

electronic states (unlike the traditional Ehrenfest model which has the same nuclear trajectory for 

all final electronic states).   

 

III. Implementation via the Initial Value Representation of SC Theory 

a. Stock and Thoss  

 The most important next step in this story is the paper of Stock and Thoss26 (ST), whose 

goal was to develop a continuous representation of the electronic DOF in order to be able to 

apply an initial value representation (IVR) of semiclassical theory (specifically the Herman-

Kluk, coherent state IVR;3a,b see below).  The approach they used was a procedure due to 

Schwinger for mapping a finite set of quantum states onto a set of bosons (i.e., harmonic 

oscillators), and the nuclear-electronic Hamiltonian they obtained was identical to the MM result 

in Eq. 2.16.  What is important about the ST result is that it shows this Hamiltonian not to be a 

model, i.e., approximation, but rather an exact representation of the nuclear-electronic system.  

I.e., were one to take this as the Hamiltonian operator in a Schrödinger equation, the exact 

quantum dynamics would result.  
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Perhaps the easiest way to demonstrate this is simply to compute the electronic matrix of 

the Hamiltonian operator corresponding to the classical Hamiltonian of Eq. 2.16, using the N 

electronic’ oscillator basis functions 

€ 

{Φk (x)} ; these are a product of N harmonic oscillator 

eigenfunctions that have one quantum of excitation in mode k and none in all the others,  

€ 

Φk (x) = φ1(xk )
k '≠1
k '≠k

N

∏ φ0 (xk ' ) 

           

€ 

= 2π−N /4xke
− 12x⋅x        (3.1) 

It is a simple matter to compute the matrix elements 

€ 

<Φk | ˆ H |Φk ' >  (since they are elementary 

harmonic oscillator matrix elements); the nuclear kinetic energy term in the Hamiltonian is 

diagonal, proportional to the unit matrix 

€ 

δk,k ' , and the result for the remainder is 

€ 

Hk,k ' (R), the 

original diabatic electronic matrix.  Since the matrix of the electronic-nuclear Hamiltonian is the 

same as that with the original diabatic electronic basis, the resulting quantum mechanics must 

therefore be the same. 

The only approximation involved in using what I will now call the MMST Hamiltonian, 

Eq. 2.16, is therefore the dynamical method used to implement it — e.g., the quasi-classical 

model discussed above, or the SC-IVR methodology discussed below—and not the fundamental 

Hamiltonian itself.  This Hamiltonian — within the (conserved) polyad of one quantum of 

excitation in the ‘electronic oscillators’ — is completely equivalent to the original quantum 

mechanical nuclear-electronic system. 

 

b. The Initial Value Representation 

Initial value representations (IVRs) were introduced1a very early in semiclassical theory 

(as a way to deal with ‘classically forbidden’ processes), and they have re-emerged3,4 in recent 
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years as a practical way for dealing with molecular systems with many degrees of freedom.  

They replace the non-linear boundary value problem of ‘pure’ semiclassical approaches, such as 

‘classical S-matrix’ theory, by a Monte Carlo average over the initial values of classical 

trajectories, and this is more amenable for systems with many degrees of freedom for it allows 

one to utilize much of the Monte Carlo methodology that has been developed for classical MD 

simulations.  SC-IVR methods and their applications have been reviewed several times in recent 

years, so here I will only summarize the basic ideas that are necessary for present applications.   

One can state the SC-IVR succinctly as an expression for the propagator (time evolution 

operator),   

€ 

exp(−i ˆ H t /h) .  The Herman-Kluk,3a,b or coherent state version is 

  

€ 

e−i ˆ H t /h = (2πh)−F dp0∫ dq0∫ Ct (p0 ,q0 )eiSt (p0 ,q0 ) /h | p t ,qt >< p0 ,q0 |  (3.2) 

where (q0,p0) are the initial conditions of the coordinates and momenta for classical trajectories, 

and (qt,pt) are their values at time t later; St is the classical action integral (the time integral of the 

Lagrangian) along this trajectory, and the pre-exponential factor Ct involves the monodromy 

matrix (the matrix of derivations of qt and pt with respect to q0 and p0).  The coherent states 

|p,q> in Eq. 3.2 are standard Cartesian minimum uncertainty wavepackets, 

  
  

€ 

< q'| p,q >  =  | γ |
π

 

 
 

 

 
 
F /4

exp[− 1
2 (q'−q) ⋅ γ ⋅ (q'−q)+ ip ⋅ (q'−q) /h]  (3.3) 

where F is the number of DOF of the system, and the matrix 

€ 

γ  can be any positive matrix chosen 

for convenience.  The simpler coordinate space IVR has the same form as Eq. 3.2, with the 

coherent states replaced by Dirac position eigenstates, 

€ 

| p0,q0 >  →  | q0 > 

€ 

| p t ,qt >  →  | qt >         (3.4) 
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and with a different pre-exponential factor (but still involving elements of the monodromy 

matrix); it can be obtained from Eqs. 3.2, 3.3 by taking the limit 

€ 

γ →∞. 

Since the primary interest in SC-IVR methods is to use them as a way to add quantum 

effects to classical MD simulations of large molecular systems, their formulation has followed 

classical MD methodology as closely as possible.  Thus Cartesian coordinates are used 

essentially exclusively, eschewing more sophisticated SC methods such as action-angle 

variables, Airy function uniformization, etc., that are useful for analytical analysis and 

treatments, but which do not lend themselves to generic computational implementation.  

Exceptions to this ‘total Cartesian’ approach are that sometimes covalent bond distances are 

fixed and only low frequency, large amplitude motions treated; this is common in classical MD 

simulations and has also been used analogously in SC-IVR approaches.27,28 

Much of the effort in the SC-IVR arena has been their use to evaluate various time 

correlation functions of the form 

  

€ 

CAB(t) = tr[ ˆ A ei ˆ H t /h ˆ B e−i ˆ H t /h ]        (3.5) 

since most quantities of interest in the dynamics of complex systems can be expressed in terms 

of them.  Straight-forward use of Eq. 3.2 for the two propagators in the correlation function thus 

gives it as a double phase space average 

  

€ 

CAB(t) = (2πh)−F dp0∫ dq0∫ (2πh)−F dp0 '∫ dq0 '  ∫ Ct (p0,q0 )  Ct (p0 ',q0 ' )* 

  

€ 

ei[St (p0 ,q0 )−St (p0 ',q0 ')]/h <p0,q0 | ˆ A |p0 ',q0 '>  <p t ',q t '| ˆ B |p t ,q t >  (3.6) 

and here one sees the additional difficulty of an SC calculation compared to a purely classical 

one:  since these phase space averages will of necessity be evaluated by Monte Carlo methods 

(both classically and SC’ly), the oscillatory factor arising from the phase difference from the 

action integrals of the two trajectory makes straight-forward Monto Carlo methods very 
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inefficient.  There are several ways that have been developed for dealing with this SC version of 

the ‘sign problem’. 

The most drastic approximation to Eq. 3.6 is to assume that the only parts of the 

integrand that contribute significantly are when the two phase points, (p0,q0) and (p0',q0') — and 

thus the two trajectories emanating from them — are infinitesimally close together.  Carrying 

through this idea (one needs to use the coordinate IVR, cf. Eq. 3.4, etc., rather than the coherent 

state version) by linearizing the difference between the two trajectories,29 leads to the classical 

Wigner approximation for the correlation function,  

  

€ 

CAB(t) = (2πh)−F dp0∫ dq0∫  Aw (p0,q0 )  Bw (p t ,qt )     (3.7a) 

i.e., the same expression as the classical correlation function except that the Wigner functions for 

the two operators appear rather than the classical functions themselves, 

  

€ 

Ow (p,q) = dΔq  ∫ e−ip⋅Δq /h < q+Δq / 2 | ˆ O | q−Δq / 2 >    (3.7b) 

for any operator 

€ 

ˆ O .  The classical Wigner model is an old idea, and is obtained as an 

approximation to a variety of formulations.30  It is interesting in the present context to see that it 

is contained within the SC-IVR description, and thus any more accurate treatment of the SC-IVR 

approach will presumably be even more accurate.  The classical Wigner model cannot describe 

any true quantum coherence features — because the forward and backward trajectories31 are 

assumed to be infinitesimally close — but it does describe some quantum effects to a useful level 

of accuracy.  It is has been shown to describe tunneling32 in H atom barrier transmission, for 

example, to an accuracy of ~ 10- 30% when the tunneling correction is as large as 102 to 103.  It 

also has been seen to describe zero point energy effects33 in low temperature liquid para-

hydrogen which prevent the liquid from freezing (as it does classically).  Because the classical 

Wigner model is so similar to a classical calculation, and thus relatively easy to implement, there 
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has been a great deal of activity in recent years using it to calculate a variety of time correlation 

functions for large molecular systems. 

The forward-backward (FB) IVR34 is the simplest version of the SC-IVR that goes 

beyond the linearized IVR/classical Wigner model and is thus able to describe true coherence 

effects.  The basic idea35 of the FB-IVR is to combine the forward and backward propagators, 

  

€ 

exp(−i ˆ H t /h) and   

€ 

exp(+i ˆ H t /h) , into one forward-backward propagation and thus cancel out 

analytically as much as possible of the phase difference between the forward and backward 

propagators, rather than having to do it all numerically.  E.g., if operator 

€ 

ˆ B  involved only the 

coordinate of one DOF, q1 say, and this were separable from all the other DOF, then the forward 

and backward propagators for the ‘bath’ (all the DOF except # 1) would exactly cancel each 

other.  The idea of the FB-IVR is not to make this approximation, but nevertheless obtain 

efficiency in the Monte Carlo integration by exploiting the fact that there will in general be much 

cancellation between the forward and backward propagators.   

For example, if operator 

€ 

ˆ B  is a coordinate operator that is the function of one collective 

function of all the coordinates q — i.e., 

€ 

ˆ B = B s(q)( ) — as is often the case, then the FB-IVR 

expression for the correlation function is34 

          
  

€ 

CAB(t) = dps  ˜ B ∫ (ps )(2πh)−F dp0∫ dq0∫ < p0 ',q0 '| ˆ A | p0 ,q0 >   

€ 

eiS0 (p0 ,q0 ) /hC0 (p0 ,q0 )  (3.8a) 

where (p0,q0) are the initial conditions for a trajectory that is propagated by the usual classical 

equations of motion until time t, at which time it undergoes a momentum jump, 

€ 

p t → p t + ps
∂s(qt )
∂qt

         (3.8b) 

and is then propagated back to time 0, the final phase point being (p0',q0').  The pre-exponential 

factor for this forward-backward trajectory is of the usual form, and the FB action integral is the 
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sum of that for the forward and backward parts of the FB trajectory plus a contribution from the 

momentum jump.  

€ 

˜ B ( ps ) is the (1d) Fourier transform of B(s).  The correlation function is thus 

seen to be a single phase space average over initial conditions — not the double phase space 

average of the complete SC-IVR expression, Eq. 3.6 — albeit over FB trajectories, plus the 1d 

integral over the momentum jump parameter ps.  This is essentially as simple a result as one can 

obtain within the SC-IVR framework that is able to describe true quantum coherence, and 

applications to several interesting problems have shown it to be capable of describing quantum 

coherence quite well.  If one were to assume that only small values of ps were significant, and 

expanded the FB action integral (and other factors) in Eq. 3.8 to first order in ps, then one would 

obtain a result very similar to the classical Wigner model (with Husimi distribution functions 

rather than Wigner ones). 

 

 c.  SC-IVR for the MMST Hamiltonian 

Application of the SC-IVR to the MMST nuclear-electronic Hamiltonian, Eq. 2.16, to 

treat electronically non-adiabatic processes is now straight-forward:36  classical trajectories are 

computed from this classical Hamiltonian, for the nuclear and electronic DOF, and the 

calculations can be carried out at the full SC-IVR without further approximation, e.g., Eq. 3.6, or 

with additional approximations, such as the ‘linearized’ IVR/classical Wigner approximation of 

Eq. 3.7, or the more accurate FB-IVR approach of Eq. 3.8.  A number of such calculations have 

been carried out,37 using all of these approaches, and some involving many (>>10) DOF and 

usually 2 (and some 3) electronic states, and they have generally shown very good agreement 

with more complete quantum calculations where these have been available.  Also, Stock and 
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Thoss38 have recently published a comprehensive review of the SC-IVR/MMST approach, and 

Grossmann39 even more recently a briefer one. 

It is thus not my purpose here to survey all recent applications of the SC-IVR/MMST 

approach, but rather I will focus on an application8 to a very simple system, one nuclear DOF 

(translation, i.e., a 1d scattering problem) and two electronic states, very much like the examples 

that Tully40 used several years ago to test the ‘fewest switches’ version of his ‘surface hopping’ 

model.  Fig. 5 shows the PES’s (here potential curves for just this one nuclear DOF), both 

diabatic and adiabatic, for a symmetric and asymmetric version of the model.  One imagines the 

incident particle approaching from the left (R <<0) with a well-defined translational energy on 

one of the potential curves, and having some probability of emerging to the ‘product’ region on 

the right (transmission) on either potential curve (i.e., electronic state), or back to the ‘reactant’ 

region on the left (reflection) also on either of the two potential curves.  

The point of this calculation is to demonstrate how the MMST classical Hamiltonian 

behaves when it is implemented semiclassically.  As has been emphasized (cf. end of Sec II), the 

nuclear-electronic trajectories generated by this Hamiltonian are Ehrenfest trajectories, and we 

know that if the traditional Ehrenfest model were applied to this problem the nuclear trajectory 

would emerge moving, incorrectly, on an average potential energy curve.  How is this changed if 

these same trajectories are used within a SC description?  And how ‘rigorous’ must be the SC 

treatment in order for the situation to be described correctly? 

To answer these questions we calculate the probability distribution of the final 

translational momentum, which can be expressed as the long time limit of a correlation function 

like that in Eq. 3.5, 

  

€ 

P(Pf ) =
t→∞
lim  tr ˆ A ei ˆ H t /h )δ( ˆ P − Pf )e− i ˆ H t /h )[ ]      (3.9a) 
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where operator 

€ 

ˆ A  is the projection operator for the initial state 

€ 

ˆ A  =  |Ψi >< Ψi |        (3.9b) 

the wavefunction for which is  

€ 

Ψi(x1, x2,R) = φ0 (x1)φ1(x2 ) < R | PiRi >     (3.9c) 

the nuclear wavefunction being a coherent state with Ri << 0, and Pi the initial translational 

momentum.  (The coherent state parameter 

€ 

γ  for this coherent state is chosen to be quite small, 

so that the initial translational energy is very sharply defined.)  With one quantum of excitation 

in ‘electronic oscillator’ 2, this wavefunction corresponds to the system being initially on 

potential curve 2.  Operator 

€ 

ˆ B  in Eq. 3.9a is a delta function, where 

€ 

ˆ P  is the nuclear momentum 

operator and Pf the observed final value of the nuclear (here, translational) momentum.  Note that 

nothing in this quantity, Eq. 3.9a, refers to the final electronic state; it is a ‘measurement’ (i.e., 

observation) only of the final nuclear momentum.  The reader should see ref. 8 for details of the 

calculations (e.g., since here operator B is a function of the nuclear momentum operator, in the 

FB trajectories there is a jump in the nuclear position at time t, rather than a jump in momentum 

as in Eq 3.8b that arises when B is a function only of coordinates). 

 Figures 6 and 7 show the probability distribution in final translational momentum for the 

symmetrical potential (Fig 5a) for two different values of the initial translational energy, Fig 6 

for the higher energy, and Fig 7 for the lower.  (The two energies are indicated by arrows on the 

vertical axis in Fig 5.)  Figures 6a and 7a show the results given by the FB version of the SC-

IVR, along with the exact QM results, the two being seen to be in good agreement.  Since the 

initial state has a well-defined value for the total energy (electronic plus translational), the two 

peaks in the distribution for positive momentum obviously correspond to the two possible final 

electronic states in which the system can emerge in the ‘product’ (transmission) region; there is 
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essentially no reflection to the ‘reactant’ (negative momentum) region for this potential.  The 

areas under the peaks give the transition probabilities to each final electronic state.  Figures 6b 

and 7b show the corresponding results given by the traditional Ehrenfest and the classical 

Wigner models.  The Ehrenfest result is essentially a delta function at one particular momentum, 

since it involves only one trajectory; this is a manifestation of the defect of this model, namely 

that the nuclear trajectory emerges on an average PES, thus having only one final nuclear 

momentum.  The classical Wigner model, since it involves an ensemble of trajectories, is 

somewhat better, showing a distribution of final nuclear momenta, and one sees that the breadth 

of the distribution is approximately related to the two peaks in Figs 6a and 7a.   It cannot, though, 

properly describe the two peaks in the distribution which correspond to the two individual final 

electronic states.   

 Figures 8 and 9 show similar results for the asymmetric version of the model (Fig 5b, the 

two arrows on the vertical axis again indicating the two energies considered).  For the higher 

energy, the correct QM and the FB-IVR results in Fig 8a (in good agreement with one another) 

show two peaks for positive momentum, corresponding again to the two final electronic states in 

the ‘product’ (transmission) region; there is essentially no reflection at this energy.  The 

traditional Ehrenfest and classical Wiger results are shown in Fig 8b; the Ehrenfest result again 

shows only a single peak, as it must, at an average final nuclear momentum, while the Wigner 

model gives a distribution that is a crude approximation to the correct (quantized) distribution of 

the translational momentum.  The lower energy case, Figure 9, is even more interesting because 

at this energy only one electronic state is allowed (an ‘open channel’) in transmission, while both 

states are allowed in reflection.  Fig 9a shows the correct QM and the FB-IVR results, which are 

reasonable agreement (though the Fourier transform involved in the FB calculation is somewhat 
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noisy); there is one peak in transmission, corresponding to the one possible electronic state, and 

two peaks at negative momentum (reflection) corresponding to the two possible final electronic 

states in the ‘reactant’ region.  The corresponding Ehrenfest and classical Wigner results are 

shown in Fig 9b.  Here the Ehrenfest model is almost completely useless, since one trajectory 

can clearly not describe transmission and reflection even qualitatively correctly; thus the one 

peak it shows in Fig 9b is essentially meaningless.  Again, the Wigner model is better, showing 

some transmission and some reflection, though again it does not describe the two individual 

electronic states in the transmission (negative momentum) region. 

 

IV. Discussion 

One sees, therefore, that when ‘Ehrenfest trajectories’ are used within a SC theory that is 

capable of describing interference/coherence correctly — as, for example, the FB version of the 

SC-IVR — the nuclear trajectories emerge, correctly, on one PES or the other, not on an average 

PES as in the traditional Ehrenfest model or the ‘linearized’/classical Wigner approximation to 

the SC-IVR, which is unable to describe coherence.  I.e. it is the proper inclusion of coherence 

that causes the Ehrenfest trajectories to ‘quantize’ on one PES or another; there do exist 

Ehrenfest trajectories that emerge on an average PES, but the net amplitude associated with them 

is zero because of destructive interference.  This is easily understood from simple WKB theory, 

where bounded motion for an extended time (i.e., many periods of oscillation) in any 1d potential 

well leads to quantization, i.e., an integer value of the classical action variable (the SC ‘quantum 

number’) as the SC phase exp  

€ 

(iS /h) accumulates, as it does for these1d harmonic oscillators in 

the asymptotic region.  Since there is only one quantum of excitation in the N electronic 

oscillators, and this is conserved by the dynamics, the only possible integer values for these SC 
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‘quantum numbers’ are 1 for one of the oscillators and 0 for all others, so that the nuclear motion 

must emerge from an uncoupled region (after a number of vibrational periods of the electronic 

oscillators) on one or another of the N PES’s (diabatic or adiabatic, the result being invariant to 

which representation is used). 

It is interesting to contrast this description to that in several phenomenological models41,42 

of electronically non-adiabatic dynamics in which it is de-coherence that drives the nuclear 

trajectory to one PES or another.  It would be interesting to see how these seemingly difference 

perspectives might be reconciled.   

There are of course cases where the correct description of coherence is not crucial.  The 

resonance electronic-vibration/rotation energy transfer effects discussed in Sec II were described 

reasonably well by the ‘quasi-classical’ treatment of the MMST Hamiltonian.  The ‘linearzied’ 

IVR/classical Wigner model is very similar to the quasi-classical approximation; as seen in the 

example discussed in Sec IIIc, it gives a distribution of final translational momenta, which could 

be ‘binned’ to obtain transition probabilities to individual final electronic states, even though the 

nuclear trajectories to not emerge precisely on the corresponding final PES. 

Seeing how a sufficiently rigorous implementation of SC theory is able to give a proper 

treatment of nuclear-electronic dynamics within the MMST representation of the system, one can 

also explore additional approximations that could be introduced to make calculations simpler 

while still retaining as correct a description as possible.  For the dynamics to ‘quantize’ correctly 

on one PES or another in non-interacting regions, at least the coherence (i.e., the SC phase) of 

the electronic-oscillator DOF needs to be included, but perhaps one could ignore the coherence 

aspects of the nuclear DOF, i.e., using a more classical-like description of them.  One way to 

implement this idea is to make a ‘linearized’/classical Wigner-like approximation for the nuclear 
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DOF, while still retaining a full SC description of the electronic DOF.  This type of ‘mixed 

classical/semiclassical’ model has been formulated,43 and model calculations carried out to 

illustrate its possibilities, but further applications have not been pursued.  In light of the present 

MMST representation for nuclear-electronic dynamics, it may be worthwhile to re-visit this 

approximation. 

Finally, it is perhaps useful to comment briefly on the relation of the SC-IVR treatment of 

the MMST Hamiltonian to a much earlier SC approach to electronically non-adiabatic dynamics 

by Pechukas,44 which was very insightful and influential; see ref. 36 for a more detailed 

discussion.  Pechukas’ approach is a two-step procedure, first to solve the (time-dependent) 

electronic Schrödinger equation for a given nuclear path R(t), and secondly to perform a 

Feynman path integral (that would give exact QM results if done exactly) over nuclear paths by 

the stationary phase approximation, i.e., SC’ly.  This leads to a nuclear trajectory that does 

indeed begin and end on a specific PES, but has the major drawback that the equation of motion 

for the nuclei is non-local in time (i.e., the force on the nuclear DOF at time t involves the future 

and the past), and is thus very difficult to implement.  Were this two-step procedure carried out 

within the SC-IVR/MMST formulation, the first step — calculation of the electronic transition 

for a fixed nuclear trajectory — would be done exactly, because the time-dependent ‘electronic’ 

Hamiltonian would be a time-dependent quadratic Hamiltonian, for which the SC-IVR is exact.   

And the second step would be done more accurately and efficiently by the SC-IVR than via the 

stationary phase approximation.  Thus the SC-IVR/MMST approach must be more accurate than 

that of Pechukas, and more importantly, it is easier to implement since it evolves the electronic 

and nuclear dynamics simultaneously and thus has no non-local character. 
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In summary, the MMST Hamiltonian, Eq. 2.16 or 2.17, provides an extremely useful 

representation of the nuclear and electronic DOF of a molecular system, and one sees again that 

all quantum effects in molecular dynamics are described at least qualitatively correctly by a 

consistent SC treatment of all the DOF of the system, and that the description is usually 

sufficiently quantitative to be useful.  Particularly interesting is that the nuclear-electronic 

classical trajectories generated by the MMST Hamiltonian (and which go into the SC theory) are 

‘Ehrenfest trajectories’.  Used within the SC framework, though, they correctly describe nuclear 

motion that ‘settles down’ on one electronic PES or another after some time in regions where the 

electronic coupling vanishes.  The primary remaining challenges are to develop the 

methodologies and algorithms necessary to implement this formulation as efficiently as possible. 
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Figure Captions 

Figure 1.  Sketch of the adiabatic potential difference 

€ 

ΔW(t)  along a classical trajectory, with 

local minima that correspond to ‘avoided crossings’; cf. the discussion in Sec IIa following Eq 

2.1.  (a) is characteristic of a very slow collision, with many vibrational periods that lead to many 

local minima, spaced by the vibrational period; (b) is characteristic of a higher energy collision 

with fewer vibrational periods during the interaction time, and thus fewer local minima.  (From 

ref. 13) 

Figure 2.  Cross section for quenching of F*(2P1/2) by collision with H2 (j=0), as a function of 

initial translational energy E.  The solid curves are the quantum mechanical results of ref. 22, and 

the points the results of the ‘quasi-classical’ trajectory calculations described in Sec IIb.  Note 

the break in the scale; i.e., the cross section for rotationally excited H2 (j=2) is more than an 

order of magnitude larger.  (From ref. 22) 

Figure 3.  Cross section for quenching of Br*(2P1/2) by collision with H2(v=0), as a function of 

initial translational energy, given by quasi-classical trajectory calculations as discussed in Sec 

IIb.  The crosses and solid circles are for final H2 vibrational state v = 1 and 0, respectively; i.e., 

the cross section for vibrationally excited H2 is much larger.  (The error bars denote the usual 

Monte Carlo error estimate.)  (From ref. 23) 

Figure 4.  Cross section for the charge transfer process Na + I 

€ 

→ Na+ + I-, as a function of initial 

translational energy.  The solid curve is the quantum coupled channel calculation from ref. 24, 

and the open circles those of the quasi-classical trajectory calculations discussed in Sec IIb.   
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(The dashed curve is the results of a perturbative approximation not related to the present 

discussion.)  (From ref. 24)   

Figure 5.  Potential curves for the (a) symmetric and (b) asymmetric versions of the 

electronically non-adiabatic scattering problem discussed in Sec IIIc.  Both diabatic and 

adiabatic potentials are shown.  The two arrows on the vertical (energy) axes indicate the two 

collision energies for which calculations were carried out.  Note that for the asymmetric version 

(Fig 5b), at the lower energy the higher electronic state is a closed channel (i.e., energetically 

forbidden) in the ‘product’ region (transmission) R >> 0, while both states are allowed for 

reflection, R << 0.   

Figure 6.  Probability distribution of the final (t 

€ 

→ ∞ ) translational momentum, as defined by 

Eq. 3.9, for the symmetric potential (Fig. 5a) and the higher energy.  (a) Solid line is the 

numerically exact QM result, and dashed line that given by the FB-IVR.  (b) Solid line (which is 

a schematic depiction of a Dirac delta function) is the result given by the traditional Ehrenfest 

model, and dashed line that given by the classical Wigner model (or linearized SC-IVR = LSC-

IVR) approximation. 

Figure 7.  Same as Fig. 6, except for the lower energy indicated in Fig. 5a. 

Figure 8.  Same as Fig. 6, except for the asymmetric potentials of Fig. 5b (for the higher energy 

indicated). 

Figure 9.  Same as Fig. 8, except for the lower energy indicated in Fig. 5b. 
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