Early Fermi Gamma-ray Space Telescope Observations of the Quasar 3C454.3

PDF Version Also Available for Download.

Description

This is the first report of Fermi Gamma-ray Space Telescope observations of the quasar 3C 454.3, which has been undergoing pronounced long-term outbursts since 2000. The data from the Large Area Telescope (LAT), covering 2008 July 7-October 6, indicate strong, highly variable {gamma}-ray emission with an average flux of {approx} 3 x 10{sup -6} photons cm{sup -2} s{sup -1}, for energies > 100 MeV. The {gamma}-ray flux is variable, with strong, distinct, symmetrically-shaped flares for which the flux increases by a factor of several on a time scale of about three days. This variability indicates a compact emission region, and ... continued below

Creation Information

Abdo, A May 7, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This is the first report of Fermi Gamma-ray Space Telescope observations of the quasar 3C 454.3, which has been undergoing pronounced long-term outbursts since 2000. The data from the Large Area Telescope (LAT), covering 2008 July 7-October 6, indicate strong, highly variable {gamma}-ray emission with an average flux of {approx} 3 x 10{sup -6} photons cm{sup -2} s{sup -1}, for energies > 100 MeV. The {gamma}-ray flux is variable, with strong, distinct, symmetrically-shaped flares for which the flux increases by a factor of several on a time scale of about three days. This variability indicates a compact emission region, and the requirement that the source is optically thin to pair-production implies relativistic beaming with Doppler factor {delta} > 8, consistent with the values inferred from VLBI observations of superluminal expansion ({delta} {approx} 25). The observed {gamma}-ray spectrum is not consistent with a simple power-law, but instead steepens strongly above {approx} 2 GeV, and is well described by a broken power-law with photon indices of {approx} 2.3 and {approx} 3.5 below and above the break, respectively. This is the first direct observation of a break in the spectrum of a high luminosity blazar above 100 MeV, and it is likely direct evidence for an intrinsic break in the energy distribution of the radiating particles. Alternatively, the spectral softening above 2GeV could be due to -ray absorption via photonphoton pair production on the soft X-ray photon field of the host AGN, but such an interpretation would require the dissipation region to be located very close ({approx}< 100 gravitational radii) to the black hole, which would be inconsistent with the X-ray spectrum of the source.

Source

  • Journal Name: Submitted to Astrophysical Journal

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-13590
  • Grant Number: AC02-76SF00515
  • DOI: 10.1088/0004-637X/699/1/817 | External Link
  • Office of Scientific & Technical Information Report Number: 952997
  • Archival Resource Key: ark:/67531/metadc932170

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 7, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 15, 2016, 3:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Abdo, A. Early Fermi Gamma-ray Space Telescope Observations of the Quasar 3C454.3, article, May 7, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc932170/: accessed August 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.