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Running title: Regulation of SBE expression 40 

 41 

Abstract 42 

Spatial and temporal expression patterns of the sorghum SBEI, 43 

SBEIIA and SBEIIB genes, encoding, respectively, starch branching 44 

enzyme (SBE) I, IIA and IIB, in the developing endosperm of 45 

sorghum (Sorghum bicolor) were studied. Full-length genomic and 46 

cDNA clones for sorghum was cloned and the SBEIIA cDNA was 47 

used together with gene-specific probes for sorghum SBEIIB and 48 

SBEI. In contrast to sorghum SBEIIB, which was expressed 49 

primarily in endosperm and embryo, SBEIIA was expressed also in 50 

vegetative tissues. All three genes shared a similar temporal 51 

expression profile during endosperm development, with a maximum 52 

activity at 15-24 days after pollination. This is different from barley 53 

and maize where SBEI gene activity showed a significantly later 54 

onset compared to that of SBEIIA and SBEIIB. Expression of the 55 

three SBE genes in the sorghum endosperm exhibited a diurnal 56 

rhythm during a 24-h cycle.  57 

 58 

Key words: Barley; Diurnal regulation; Endosperm; Oscillation; 59 
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 61 

Abbreviations: AGPase, ADP-glucose pyrophosphorylase; GBSSI, 62 

Granule-bound starch synthase I; SBE, starch branching enzyme  63 

 64 

The cDNA sequence of sorghum SBEIIA will appear in GenBank 65 

under the accession nr. XXXXXXXX. 66 

 67 

68 
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Introduction 68 

Starch synthesis is the main process that determines yield in cereal 69 

grains. The pathway in starch synthesis involves conversion of 70 

sucrose to ADP-glucose and subsequent conversion of this precursor 71 

into the polyglucan molecules amylose and amylopectin. The 72 

process of starch synthesis is governed by several groups of 73 

enzymes, i.e. ADP-glucose pyrophosphorylase (AGPase), starch 74 

synthases (SS), starch branching enzymes (SBE) and starch 75 

debranching enzymes (DBE). These enzymes exist in different 76 

isoforms and the biochemical characteristics of the enzymes and the 77 

expression profiles of the corresponding genes specify the structural 78 

organization of starch molecules in plant organs such as the 79 

endosperm (see Tomlinson and Denyer, 2003, for a review on starch 80 

synthesis and structure in cereals; see also Ball et al., 1998; Buléon 81 

et al., 1998; Myers et al., 2000; Nakamura, 2002; Smith, 2001, for 82 

other reviews on starch synthesis).  83 

 84 

Regulation of starch synthesis is exercised by an intricate network 85 

of sugar signaling and hormonal transduction pathways, the nature 86 

of which is poorly understood (Jansson 2004; León and Sheen, 87 

2003; Rolland et al., 2006; Sheen et al., 1999; Smeekens, 2000). 88 
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Furthermore, it has been shown that starch synthesis in source 89 

organs is under diurnal and circadian control  (Cheng et al., 2002; 90 

Dian et al., 2003; Geigenberger and Stitt, 2000; Sehnke et al., 2001). 91 

Circadian regulation of the GBSSI gene, encoding granule-bound 92 

SSI (GBSSI), in leaves has been reported for Arabidopsis (Tenorio 93 

et al., 2003), sweet potato (Wang et al., 2001) and snapdragon 94 

(Merida et al., 1999). In three instances, diurnal oscillations of 95 

starch synthesis gene expression has been observed also in sink 96 

organs; for the growth ring formation starch granules in potato 97 

tubers (Pilling and Smith, 2003), for the gene encoding the catalytic 98 

subunit of AGPase in potato tubers (Geigenberger and Stitt, 2000), 99 

and the SBEI and SBEII genes, encoding, respectively, SBEI and 100 

SBEII, in cassava storage roots (Baguma et al., 2003).  101 

 102 

Sorghum is the fourth most important cereal crop trailing behind 103 

rice, maize and wheat. However, it is ranked second to maize in 104 

supply of grain requirement within sub-Saharan Africa. In most of 105 

these countries, sorghum is the main source of starch for human 106 

diet. To date, over 500 million people in the developing countries 107 

depend on sorghum as the main staple food. In other countries, 108 
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sorghum starch is mainly used in livestock feed formulations and as 109 

a cheap source of raw material for industrial applications.  110 

The value of sorghum, a C4 plant, is derived from its ability to 111 

grow in marginal areas lacking sufficient moisture and fertility 112 

unfeasible to support production of maize, wheat or rice. 113 

Consequently, sorghum holds the potential to supply a greater share 114 

of the world’s grain demand. This congruency makes expansion of 115 

sorghum starch production and utility feasible as a main alternative 116 

to maize starch for food and non-food products. Furthermore, as a 117 

C4 grass with a relatively small genome (735 Mb), sorghum can also 118 

serve as a model plant for potential bioenergy grasses such as 119 

Miscanthus. 120 

 121 

     We have previously reported on the temporal and spatial 122 

expression profiles for the sorghum SBEI and SBEIIB genes 123 

(Mutisya et al., 2003). In the present study, we wanted to compare 124 

the expression profiles for the SBEI, SBEIIA and SBEIIB genes in 125 

sorghum and assess whether they are subject to diurnal control. 126 

Since sorghum SBEIIA had not yet been cloned, we also describe 127 

the isolation and characterization of this gene and the similarity 128 

between the sorghum SBEIIA and SBEIIB proteins. 129 
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 130 

 131 

Materials and methods 132 

Plant materials 133 

Sorghum (Sorghum bicolor L. Moench) and barley (Hordeum 134 

vulgare) plants were grown in greenhouse under controlled 16-h 135 

light/8-h dark cycles as described (Mutisya et al., 2003). For 136 

analysis of the spatial SBE expression profiles, seeds were harvested 137 

at 9 days after pollination (d.a.p.). For the temporal expression 138 

profiles during endosperm development, seeds were harvested at 139 

indicated intervals after d.a.p. For analysis of diurnal expression, 140 

seeds were harvested at 9-12 d.a.p. Samples for analyses were 141 

immediately frozen and stored at – 80oC until use. 142 

 143 

 144 

Molecular cloning and DNA sequence analysis 145 

Screening of the sorghum genomic library (SB-BBc; Mutisya et al., 146 

2003) for SBEIIA was performed with heterologous barley probes. 147 

To identify all candidate clones for SBEII, we used a full-length 148 

barley SBEIIA cDNA probe. The probe was labeled with (32P)-dCTP 149 

(Amersham Phamarcia, Biotech., UK) according to instructions by 150 
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the manufacturer. Hybridization was performed as described  151 

(Mutisya et al., 2003). To identify clones specific for SBEIIA, 152 

further screening was performed using a unique 5-´end region of the 153 

barley SBEIIA cDNA. 154 

 155 

Total RNA was isolated from developing sorghum endosperm 156 

according to Sun et al. (1999). Primers were designed from genomic 157 

sequences within the first 9 exons of sorghum SBEIIA and the 3’ 158 

unstranslated region of maize SBEIIA. The first strand cDNA was 159 

synthesized as per manufacturers instruction (Amersham Pharmacia 160 

Biotech., UK). Reverse transcriptase (RT) PCR was performed 161 

according to standard protocols. The PCR products were cloned into 162 

the PCRR II - TOPOR cloning vector  (Invitrogen, USA) and 163 

sequenced. 164 

 165 

Sequencing of DNA inserts of clones was carried out on both 166 

strands using a DNA sequencer. Database searches were carried out 167 

using the BLAST programs available at NCBI 168 

(hptt://www.NCBI.nlm.nih.gov/Blast). Sequence alignment was 169 

performed using the MacVector program (Accelrys Software Inc., 170 

France). 171 
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 172 

DNA and RNA blot analyses 173 

Total genomic DNA was isolated from young sorghum leaves as 174 

described by Mutisya et al. (2003). To determine the SBEIIA gene 175 

copy number, approximately 20 µg DNA was digested with the 176 

restriction enzymes HpaI, Kpn1 and SacI that cut only once within 177 

the probe. The digests were subjected to DNA gel blot analysis as 178 

described (Mutisya et al., 2003) using a 5’-labelled SBEIIA probe. 179 

 180 

For examination of SBE expression, total RNA was isolated from 181 

sorghum and barley and purified as described (Mutisya et al., 2003). 182 

RNA gel blot analyses were performed as described by Sun et al. 183 

(2003) using 32P-labelled gene-specific cDNA fragment for 184 

sorghum SBEI and SBEIIB (Mutisya et al., 2003), sorghum SBEIIA 185 

(this work) and barley SBEIIB (Sun et al., 1998). The membranes 186 

were striped of the radioactive probes in a boiling 0.5% (w/v) SDS 187 

solution and re-hybridized with 18S rRNA-labeled probes. 188 

 189 

Protein extraction and analysis 190 

Developing sorghum endosperms at 15 d.a.p. were harvested at 6-h 191 

intervals and ground in a mortar into fine powder and homogenized 192 
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with 2 volumes of extraction buffer (20 mM Tris-HCl, pH 7.5, 5 193 

mm DTT and 5 mM EDTA). The homogenate was centrifuged at 194 

10, 000 g for 15 min at 4 oC. The supernatant was re-centrifuged at 195 

12, 000 g to remove all debris. Protein gel blot analyses were 196 

performed as described (Mutisya et al., 2003). Zymogram assays for 197 

SBE activity was carried out as described by Sun et al. (1996).  198 

 199 

 200 

Results and discussion 201 

Isolation and analysis of SBEIIA cDNA and genomic DNA 202 

A sorghum BAC library (Mutisya et al., 2003) was screened using a 203 

heterologous barley SBEIIA probe. Out of a total of 105,592 clones, 204 

we found 22 that were specific for SBEIIA. One of the clones that 205 

hybridized strongly to the probe was subjected to restriction digest 206 

and re-probed with the same SBEIIA probe. The hybridizing DNA 207 

fragments were isolated, sub-cloned and sequenced. A 4.2 kb long 208 

sequence distributed over two overlapping fragments  (2.5 and 2.0 209 

kb, respectively) from the 5´ region was sequenced. A BLAST 210 

search using the longest fragment revealed that the sorghum SBEIIA 211 

clone shared a high degree of homology with SBEIIA from maize, 212 

wheat, barley and rice, in a descending order. Based on the 213 
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alignment with maize and wheat SBEIIA, it was evident that the 214 

sequence from the sorghum clone contained the first 9 exons and 8 215 

introns.  216 

     Based on the 5’ sequence of sorghum SBEIIA and the 3’ 217 

sequence of maize SBEIIA, primers were designed for RT-PCR 218 

amplification of a sorghum SBEIIA cDNA clone using total RNA 219 

isolated from developing sorghum endosperm 21 d.a.p. Only one 220 

PCR product with the expected size was obtained. The PCR product 221 

was cloned and sequenced. The SBEIIA cDNA clone was 2835 222 

nucleotides long and encompassed the entire coding region.  223 

 224 

 225 

Sequence analysis of sorghum SBEIIA 226 

The deduced amino acid sequence of the SBEIIA cDNA suggests 227 

that it encodes a polypeptide of 677 amino acids. A comparison of 228 

the primary structures of sorghum SBEIIA and SBEIIB revealed 229 

that they share 84% sequence identity (Fig. 1). The four regions 230 

implicated in the catalytic site of amylolytic enzymes (Jespersen et 231 

al., 1993) are conserved in sorghum SBEIIA (data not shown; see 232 

Mutisya et al., 2003, for a discussion on sorghum SBEIIB). The 233 

principal difference between the two enzymes is the 130 amino 234 
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acids-long N-terminal sequence of SBEIIB (Fig. 1). This is similar 235 

to the situation in barley and might reflect a differential partitioning 236 

of the SBEIIA and SBEIIB isoforms (Sun et al., 1998).  237 

 238 

Sorghum SBEIIB gene copy number 239 

DNA gel blot analysis was performed to determine the gene copy 240 

number of SBEIIA. Using three restriction enzymes with a single 241 

recognition site within the probe consistently yielded two 242 

hybridizing bands, strongly indicating a single copy of SBEIIA in 243 

the sorghum genome (data not shown). A single-copy SBEIIA gene 244 

is in agreement with the situation for SBEIIB in sorghum (Mutisya 245 

et al., 2003) and for SBEIIA and SBEIIB in barley, wheat and rice 246 

(Kim et al., 1998; Rahman et al., 2001; Sun et al., 1998; 247 

Yamanouchi and Nakamura, 1997). 248 

 249 

Spatial and developmental expression of sorghum SBEIIB  250 

We noted previously (Mutisya et al., 2003) that the sorghum SBEI 251 

and SBEIIB genes were predominantly expressed in endosperm and 252 

embryo tissues. The spatial expression pattern of sorghum SBEIIA 253 

was investigated and compared to that of SBEI and SBEIIB. Total 254 

RNA was extracted from different tissues and subjected to RNA gel 255 
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blot analyses using gene-specific probes. The results demonstrated 256 

that both SBEIIA and SBEIIB were expressed predominantly in the 257 

embryo and endosperm at the time point examined, however, 258 

transcripts hybridizing to SBEIIA were also detected in the leaves, 259 

stems and roots (Fig. 2B). The differential expression of the 260 

sorghum SBEIIA and SBEIIB genes is in agreement with the patterns 261 

in barley and maize, where SBEIIB is exclusively or preferentially 262 

expressed in the endosperm while SBEIIA is expressed in all tissues 263 

analyzed (Gao et al., 1996; Sun et al., 1998). The size of the 264 

detected sorghum SBEIIA transcript was approximately 2.8 kb, 265 

similar to what has been reported for barley (Sun et al., 1998), maize 266 

(SBE2b; Fisher et al., 1993) and rice (SBE3; Mizuno et al., 1993). 267 

     During the grain filling period, expression of SBEIIA gene was 268 

detected around 10 d.a.p. (Fig. 2A). Steady-state levels of SBEIIA 269 

transcripts peaked around 22 days after pollination and then 270 

drastically reduced to undetectable levels until grain maturity. This 271 

temporal expression profile is similar to that of sorghum SBEIIB and 272 

SBEI (Mutisya et al., 2003). Thus in contrast to barley, where SBEI 273 

activity shows a considerably later onset as compared to SBEIIA and 274 

SBEIIB (Mutisya et al., 2003; Sun et al., 1998), the activity for all 275 

three SBE genes in sorghum appears to peak at the same time. If, 276 
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and how, that translates to differences in starch structure between 277 

the two cereals during endosperm development remains to be 278 

elucidated.  279 

 280 

Diurnal oscillations of the sorghum SBEII genes 281 

To further investigate the temporal expression of the sorghum SBE 282 

genes we monitored transcript accumulation in endosperms of seeds 283 

harvested at 9 d.a.p. from plants grown under two different 284 

light/dark (LD) regimes. Interestingly, the SBE expression levels 285 

showed a diurnal fluctuation with an induction in the light and 286 

decline in the dark (Fig. 3A, B). A similar behavior in expression 287 

was observed also for barley SBEIIB (Fig. 3 C). Whether SBE 288 

transcript accumulation in sorghum and barley also exhibited an 289 

oscillation within the light periods is difficult to assess at this time 290 

and is a question that should be addressed by further experiments. 291 

 292 

Analyses of SBE protein levels and activity  293 

Protein gel blot assays with an antiserum against SBEIIB was 294 

employed to examine the levels of SBE proteins in seeds harvested 295 

from LD or DD sorghum plants at different time of the day. We 296 

noted that SBEIIB protein levels in the endosperm were relatively 297 
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constant throughout the sampling period for both LD and DD plants 298 

(Fig. 4A). Zymogram analysis of SBE activity in endosperm from 299 

LD sorghum plants also revealed no overt fluctuation in branching 300 

enzyme activity during a 24-h period (Fig. 4B). However, careful 301 

examination of the gel points to the possibility of a low-amplitude 302 

12-h oscillation. In addition to the SBE activities, another activity 303 

band, probably corresponding to endogenous starch phosphorylase 304 

a, was visible on the zymogram.  305 

 306 

Conclusion 307 

We have isolated the SBEIIA gene from sorghum, characterized its 308 

expression, and compared it to that of sorghum SBEI and SBEIIB. 309 

Most notably, we found that the expression for all three SBE genes 310 

exhibited a diurnal rhythm. Possibly, the rhythmicity in SBE 311 

expression serves a means for the endosperm cells to anticipate the 312 

diurnal flux of sucrose from the source. Oscillation in SBE 313 

expression was observed also in barley endosperm and thus it might 314 

be a general phenomenon for starch synthesis in sink organs.  315 

The oscillation in SBE expression did not translate to a matching 316 

fluctuation in SBE protein levels of SBE activity, although a weak 317 

12-h oscillation in SBE activity cannot be excluded. That 318 
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rhythmicity in mRNA levels operates without downstream effects 319 

on the accumulation of the corresponding protein products have 320 

been demonstrated before. For example, in Arabidopsis leaves it 321 

was reported that certain genes encoding enzymes involved in starch 322 

degradation were subject to circadian regulation although the 323 

abundance of corresponding enzymes remained constant during the 324 

circadian cycle (Lu et al., 2005). 325 
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Figure legends 455 

Figure 1. Alignment of the sorghum SBEIIA and SBEIIB 456 

sequences. Identical amino acids are indicated as grey boxes. The 457 

postulated transit peptide cleavage site for SBEIIB (Mutisya et al., 458 

2003) is shown as a vertical line below the sequence. 459 

 460 

Figure 2. Temporal and spatial expression profiles for sorghum 461 

SBEIIA and SBEIIB. (A). Steady state levels of transcripts in 462 

endosperm at indicated days after pollination (d.a.p.). (B). Steady 463 

state levels of transcripts in endosperm (En), embryo (Em), leaves 464 

(Lv), stem (St), or root (Rt).  465 

 466 

Figure 3. Diurnal expression profiles of SBE genes in sorghum and 467 

barley endosperm. Steady state levels of SBE transcripts in sorghum 468 

(A, B) or barley (C) plants grown under light/dark cycles, with light 469 

switched on at 6 am (A), 12 noon (B), or 4 am (C) were analyzed. In 470 

(C) only data for SBEIIB are shown but results were similar for 471 

SBEI and SBEIIA. Times are indicated as follows: 3, 3 am; 6, 6 am; 472 

9, 9 am; 12, noon; 15, 3 pm; 18, 6 pm; 21, 9 pm; 24, midnight. The 473 

horizontal bars indicate transitions between light (white) and 474 

darkness (black). Levels for 18S rRNA are shown as controls. 475 
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 476 

 477 

Figure 4. SBE protein levels and activity in sorghum endosperm 478 

during a 24-h cycle. Total endosperm protein was extracted and 479 

subjected to protein gel blot analysis with an SBEIIB antiserum (A) 480 

or zymogram analysis of SBE activity (B). Each lane was loaded 481 

with 100 g protein extract. Other conditions as in Fig. 3. 482 

 483 

 484 
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