Large meteoroid detection using the global IMS infrasound system

PDF Version Also Available for Download.

Description

Numerous signals will be routinely detected using the 60 array, global IMS (International Monitoring System) infrasound network. Infrasonic signals are sub-audible quasi longitudinal, atmospheric waves in the frequency band from about 10 Hz to -5 minutes in period (limited by human acoustic audibility in the high frequency limit and by the wave-guide acoustic cut-off frequency and the Brunt Vaisalla frequency in the low frequency limit) These small amplitude waves are a natural subset of the well-known atmospheric acoustic-gravity wave regime which has been identified from the linearized equations of geophysical fluid mechanics in the flat earth approximation, neglecting the earth's ... continued below

Physical Description

10 p.

Creation Information

ReVelle, D. O. (Douglas O.) January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Numerous signals will be routinely detected using the 60 array, global IMS (International Monitoring System) infrasound network. Infrasonic signals are sub-audible quasi longitudinal, atmospheric waves in the frequency band from about 10 Hz to -5 minutes in period (limited by human acoustic audibility in the high frequency limit and by the wave-guide acoustic cut-off frequency and the Brunt Vaisalla frequency in the low frequency limit) These small amplitude waves are a natural subset of the well-known atmospheric acoustic-gravity wave regime which has been identified from the linearized equations of geophysical fluid mechanics in the flat earth approximation, neglecting the earth's rotation, etc. For the IMS network the instrumental pressure sensor response was chosen to range from -4 to 0.02 Hz. These are ground-based arrays of typically 4 to 9 sensors with separations of about 1-2 km between the array elements. Examples of naturally occurring impulsive sources of infrasound include volcanic eruptions, earthquakes, bolides (large meteor-fireballs entering the atmospheric at very high speeds up to -300 times faster than ground-level sound waves), microbaroms (the 'voice of the sea' due to the interaction of atmospheric storms and surface ocean waves) and the supersonic motion of the auroral electrojet at about 100 km altitude (auroral infrasonic waves), etc. In this paper we will briefly summarize our current state of knowledge of infrasound signals from bolides. This summary will include the generation of the signals at the complex, quasi-cylindrical line source, to the refraction and diffraction of the propagating waves by the middle atmospheric and tropospheric temperature and wind systems and finally, the detection of the signals and their interpretation by inferring the source properties, Le., source altitude, blast radius (see below) and the source energy, etc. In addition, we will use infrasound from energetic bolides to estimate the expected steady state, global influx rate of these large bodies as a hnction of the bolide source energy. Further details on this subject can also be found in recent publications by the author.

Physical Description

10 p.

Source

  • Submitted to: Acoustical Society of America Meeting, Cancun, Mexico, Dec. 2-6, 2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-6648
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976405
  • Archival Resource Key: ark:/67531/metadc932137

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 4:19 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

ReVelle, D. O. (Douglas O.). Large meteoroid detection using the global IMS infrasound system, article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc932137/: accessed January 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.