RHIC low energy beam loss projections

PDF Version Also Available for Download.

Description

For RHIC low-energy operations, we plan to collide Au beams with energies of E = 2:5-10 GeV/u in RHIC. Beams are injected into collision optics, and RHIC runs as a storage ring with no acceleration. At these low energies, observed beam lifetimes are minutes, with measured beam lifetimes of 3.5 min (fast) and 50 min (slow) at E=4.6 GeV/u in the March 2008 test run. With these lifetimes we can operate RHIC as a storage ring to produce reasonable integrated luminosity. This note estimates beam losses and collimator/dump energy deposition in normal injection modes of low energy operation. The main ... continued below

Physical Description

1 - 6

Creation Information

Satogata,T. August 1, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

For RHIC low-energy operations, we plan to collide Au beams with energies of E = 2:5-10 GeV/u in RHIC. Beams are injected into collision optics, and RHIC runs as a storage ring with no acceleration. At these low energies, observed beam lifetimes are minutes, with measured beam lifetimes of 3.5 min (fast) and 50 min (slow) at E=4.6 GeV/u in the March 2008 test run. With these lifetimes we can operate RHIC as a storage ring to produce reasonable integrated luminosity. This note estimates beam losses and collimator/dump energy deposition in normal injection modes of low energy operation. The main question is whether a normal injection run is feasible for an FY10 10-15 week operations run from a radiation safety perspective. A peripheral question is whether continuous injection operations is feasible from a radiation safety perspective. In continuous injection mode, we fill both rings, then continuously extract and reinject the oldest bunches that have suffered the most beam loss to increase the overall integrated luminosity. We expect to gain a factor of 2-3 in integrated luminosity from continuous injection at lowest energies if implemented[1]. Continuous injection is feasible by FY11 from an engineering perspective given enough effort, but the required extra safety controls and hardware dose risk make it unappealing for the projected luminosity improvement. Low-energy electron cooling will reduce beam losses by at least an order of magnitude vs normal low-energy operations, but low energy cooling is only feasible in the FY13 timescale and therefore beyond the scope of this note. For normal injection low energy estimates we assume the following: (1) RHIC beam total energies are E=2.5-10 GeV/u. (Continuous injection mode is probably unnecessary above total energies of E=7-8 GeV/u.); (2) RHIC operates only as a storage ring, with no acceleration; (3) 110 bunches of about 0.5-1.0 x 10{sup 9} initial bunch intensities (50-100% injection efficiency, likely conservative); (4) 90% collimation efficiency, with 10% of beam losses elsewhere. This is considered mildly conservative [2]; (5) Beam lifetimes range from about 1 minute (E=2.5 GeV/u) to 20 minutes (E=7-8 GeV/u); (6) The primary beam loss mechanism is space charge/IBS blowup of transverse emittance. This implies that most beam is lost at transverse apertures, particularly abort kickers and collimators. Mar 11 2008 test run data also shows some mild chronic losses around the other IR triplets. We were not using collimators during this test run. (See Fig. 1.); and (7) The RHIC ASE states that the 'maximum number of heavy ions in each ring (is) to be less than the equivalent of 2.4 x 10{sup 11} Au ions at 100 GeV/u' [3]. The total stored beam energy of this beam is 9.5 x 10{sup 15} GeV-u.

Physical Description

1 - 6

Source

  • Related Information: PAC09

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: BNL--90496-2009-IR
  • Grant Number: DE-AC02-98CH10886
  • DOI: 10.2172/970517 | External Link
  • Office of Scientific & Technical Information Report Number: 970517
  • Archival Resource Key: ark:/67531/metadc932084

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 8:42 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Satogata,T. RHIC low energy beam loss projections, report, August 1, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc932084/: accessed December 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.