Spacelike and timelike response of confined relativistic particles.

PDF Version Also Available for Download.

Description

Basic theoretical issues relating to the response of confined relativistic particles are considered including the scaling of t h e response in spacelike and timelike regions of momentum transfer and the role of final state interactions. A simple single particle potential model incorporating relativity and linear confinement is solved exactly and its response is calculated. The response is studied in common approximation schemes and it is found that final state interactions effects persist in the limit that the three-momentum transferred to the target is large. The fact that the particles are bound leads to a non-zero response in the timelike ... continued below

Creation Information

Paris, M. W. (Mark W.) January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Basic theoretical issues relating to the response of confined relativistic particles are considered including the scaling of t h e response in spacelike and timelike regions of momentum transfer and the role of final state interactions. A simple single particle potential model incorporating relativity and linear confinement is solved exactly and its response is calculated. The response is studied in common approximation schemes and it is found that final state interactions effects persist in the limit that the three-momentum transferred to the target is large. The fact that the particles are bound leads to a non-zero response in the timelike region of four-momentum transfer equal to about 10% of the total strength. The strength in the timelike region must be taken into account to fulfill the particle number sum rule.

Source

  • Submitted to: Proceedings for Electron Nucleus Scattering Meeting, Elba, Italy, June 24-28, 2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-5981
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976354
  • Archival Resource Key: ark:/67531/metadc932002

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 1:29 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Paris, M. W. (Mark W.). Spacelike and timelike response of confined relativistic particles., article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc932002/: accessed January 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.