Efficient breakdown of lignocellulose using mixed-microbe populations for bioethanol production.

PDF Version Also Available for Download.

Description

This report documents progress in discovering new catalytic technologies that will support the development of advanced biofuels. The global shift from petroleum-based fuels to advanced biofuels will require transformational breakthroughs in biomass deconstruction technologies, because current methods are neither cost effective nor sufficiently efficient or robust for scaleable production. Discovery and characterization of lignocellulolytic enzyme systems adapted to extreme environments will accelerate progress. Obvious extreme environments to mine for novel lignocellulolytic deconstruction technologies include aridland ecosystems (ALEs), such as those of the Sevilleta Long Term Ecological Research (LTER) site in central New Mexico (NM). ALEs represent at least 40% of ... continued below

Physical Description

30 p.

Creation Information

Murton, Jaclyn K.; Ricken, James Bryce & Powell, Amy Jo November 1, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report documents progress in discovering new catalytic technologies that will support the development of advanced biofuels. The global shift from petroleum-based fuels to advanced biofuels will require transformational breakthroughs in biomass deconstruction technologies, because current methods are neither cost effective nor sufficiently efficient or robust for scaleable production. Discovery and characterization of lignocellulolytic enzyme systems adapted to extreme environments will accelerate progress. Obvious extreme environments to mine for novel lignocellulolytic deconstruction technologies include aridland ecosystems (ALEs), such as those of the Sevilleta Long Term Ecological Research (LTER) site in central New Mexico (NM). ALEs represent at least 40% of the terrestrial biosphere and are classic extreme environments, with low nutrient availability, high ultraviolet radiation flux, limited and erratic precipitation, and extreme variation in temperatures. ALEs are functionally distinct from temperate environments in many respects; one salient distinction is that ALEs do not accumulate soil organic carbon (SOC), in marked contrast to temperate settings, which typically have large pools of SOC. Low productivity ALEs do not accumulate carbon (C) primarily because of extraordinarily efficient extracellular enzyme activities (EEAs) that are derived from underlying communities of diverse, largely uncharacterized microbes. Such efficient enzyme activities presumably reflect adaptation to this low productivity ecosystem, with the result that all available organic nutrients are assimilated rapidly. These communities are dominated by ascomycetous fungi, both in terms of abundance and contribution to ecosystem-scale metabolic processes, such as nitrogen and C cycling. To deliver novel, robust, efficient lignocellulolytic enzyme systems that will drive transformational advances in biomass deconstruction, we have: (1) secured an award through the Department of Energy (DoE) Joint Genome Institute (JGI) to perform metatranscriptomic functional profiling of eukaryotic microbial communities of blue grama grass (Bouteloua gracilis) rhizosphere (RHZ) soils and (2) isolated and provided initial genotypic and phenotypic characterization data for thermophilic fungi. Our preliminary results show that many strains in our collection of thermophilic fungi frequently outperform industry standards in key assays; we also demonstrated that this collection is taxonomically diverse and phenotypically compelling. The studies summarized here are being performed in collaboration with University of New Mexico and are based at the Sevilleta LTER research site.

Physical Description

30 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2009-6963
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/974402 | External Link
  • Office of Scientific & Technical Information Report Number: 974402
  • Archival Resource Key: ark:/67531/metadc931826

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 7, 2016, 11:02 a.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Murton, Jaclyn K.; Ricken, James Bryce & Powell, Amy Jo. Efficient breakdown of lignocellulose using mixed-microbe populations for bioethanol production., report, November 1, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc931826/: accessed December 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.