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Abstract

We present the extension of a deterministic fractal geometric procedure aimed
at representing the complexity of the spatio-temporal patterns encountered
in environmental applications. The original procedure, which is based on
transformations of multifractal distributions via fractal functions, is extended
through the introduction of nonlinear perturbations to the underlying iter-
ated linear maps. We demonstrate how the nonlinear perturbations generate
yet a richer collection of patterns by means of various simulations that include
evolutions of patterns based on changes in their parameters and in their sta-
tistical and multifractal properties. It is shown that the nonlinear extensions
yield structures that closely resemble complex hydrologic temporal data sets,
such as rainfall and runoff time series, and width-functions of river networks
as a function of distance from the basin outlet. The implications of this
nonlinear approach for environmental modeling and prediction are discussed.



1 Introduction

Mathematical methods based on fractal geometry and chaos theory have
now long been used as the language for the description of the complexities
so often encountered in natural phenomena (e.g., Mandelbrot, 1983; Lorenz,
1993). These notions, however, are oftentimes insufficient to study, on an
individual basis, the incredible variety of the patterns observed in nature.
Given that natural sets (i.e., time series, spatial patterns, space-time sets) are
typically erratic, noisy, intermittent, non-smooth, or in short “random,” it has
become natural to model them using stochastic (fractal) theories. Stochastic
fractal modeling has resulted in a variety of approaches that, while preserving
some of the relevant statistical and physical attributes of the records (e.g.,
autocorrelation function, power spectrum, moments, multifractal spectrum,
etc.), are typically unable to capture the specific details and textures present
in individual sets.

As stochastic approaches, by definition, can only generate plausible real-
izations preserving only some features of the data, and as studies of nonlinear
dynamics have revealed that details indeed matter (e.g., in climate studies;
Lorenz 1993), the following questions become inevitable: (1) Is it possible to
devise a modeling approach that faithfully models individual patterns cap-
turing not only the overall trends and statistical features of the records but
also their inherent details? (2) Can such an approach be defined without
resorting to the concept of randomness, implying an inherent hidden order
in complexity as in deterministic chaos? (3) Can such an approach, by the
capturing of details, be helpful in studying the underlying dynamics of such
sets?

It is now well known that a large class of deterministic fractal sets can be
generated via iterations of simple linear maps (e.g., Barnsley, 1988). Puente
(1992) described how fractal interpolation functions (defined as the attractors
of simple linear maps) transform multifractal distributions into determinis-
tic derived measures that mimic the complexity of patterns found in nature.
The present work reviews and extends this deterministic fractal geometric
approach of Puente (1992). The extensions entail adding bounded nonlin-
ear perturbations to the above iterated linear maps to produce yet more
exotic attractors and subsequent deterministic derived measures. As shall
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be demonstrated herein, the nonlinear perturbations uncover a vast class of
relevant patterns over one dimension that closely resemble those found in
a variety of environmental applications. These patterns are parsimoniously
encoded via only a few geometric parameters (i.e., the quantities that define
the involved maps and perturbations and also the multifractal distribution).

The organization of this paper is as follows. Given first is a review of
the original mathematical construction and a description of the nonlinear
extensions. This is followed by a variety of interesting examples that include
a host of evolutions varying a few parameters and that contain a statistical
and multifractal analysis of the patterns. The relevance of this approach
to environmental modeling is discussed and directions for future work are
sketched.

2 The Fractal Multifractal Approach

The graph G of a fractal interpolating function, from x to y and passing by
N + 1 points on the plane {(xn, yn); x0 < . . . < xN}, is defined by iterating
N linear maps, n = 1, . . . , N (e.g., Barnsley, 1986):
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The initial conditions in equations (2) lead to simultaneous sets of linear
equations that allow calculation of the parameters an, cn, en, and fn in terms
of the interpolating points and the vertical scalings parameters, dn:

an =
xn − xn−1

xN − x0
(3)

cn =
yn − yn−1 − dn(yN − y0)

xN − x0
(4)

en = xn−1 − x0 · an (5)

fn = yn−1 − cn · x0 − dn · y0 (6)
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Equations (2) ensure that G (the attractor obtained by arbitrarily iterating
the linear maps) exists and that it is a continuous function that contains the
initial interpolating points (e.g., Barnsley, 1986). As the same attractor G

is found irrespective of how the iterations are performed (i.e., with fair or
biased proportions on the maps wn), such a unique set is fully deterministic.
Depending on the parameters, G turns out to have a fractal dimension D ∈
[1, 2) (Barnsley, 1988).

As the process of iterations is carried out, effectively sampling G point by
point, not only is the attractor being computed but also a unique invariant
measure over G is induced, which reflects how the attractor is being filled
up. The existence of such a measure allows computing unique (and once
again fully deterministic) projections over the coordinates x and y (say dx

and dy) that turn out to have interesting shapes, as found in a variety of
environmental applications and beyond (e.g., Puente, 1996, 2004).

Figure 1 shows an example of these ideas for a fractal interpolating function
(having fractal dimension D = 1.485) that passes by {(0,0), (1/2,-0.35), (1,-
0.2)} and is based on the scalings d1 = -0.8 and d2 = -0.6. In addition to the
graph of the attractor G, the figure also includes the implied projections dx

and dy of the unique measure found over G (having 212 = 4096 bins) when
the corresponding mappings w1 and w2 are iterated (219 times) according to
a 30-70% proportion, using independent pseudo-random numbers, starting
the process from the mid-point (1/2,-0.35).

As the x coordinate of the linear maps does not depend on y (as implied
by the zero value in the first component of Equation (1)), the measure dx is
a deterministic binomial multifractal with parameter p = 0.3 as defined via a
multiplicative cascade (Mandelbrot, 1989). The measure dy, being related to
dx via the fractal interpolating function, turns out to be the derived measure
of dx via the function that G graphs and is, hence, computed adding all
measure values over x that correspond to a given value of y (e.g., Puente,
1994, 1996). Notice that this projection may be computed at a general angle
θ, other than zero degrees as shown in Figure 1.

As may be seen, the procedure leads to complex and “random-looking”
measures dy (i.e., the projection) that resemble environmental time series,
such as a rainfall data set as a function of time (Puente and Obregón, 1996).
As multifractal measures are relevant in turbulence studies (e.g., Meneveau
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and Sreenivasan, 1987), the projection sets, dy, may be assigned an interpre-
tation as reflections or transformations of turbulence (Puente and Sivakumar,
2007).

3 Nonlinear Extensions of the Fractal Multifractal Approach

A suitable way to extend the fractal-multifractal approach is to add a bounded
nonlinear perturbation g(y) on the y component of the linear maps, as follows:
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This yields, using the same initial conditions as before (equations (2)), the
following modified parameters cn and fn that now depend on the specific
choice of the nonlinear function g and the scaling parameters dn:

cn =
yn − yn−1 − dn(yN + g(yN)− y0 − g(y0))

xN − x0
(8)

fn = yn−1 − cn · x0 − dn · (y0 + g(y0)) (9)

As an example, Figure 2 shows what is obtained (for the same set of param-
eters used for the linear case in Figure 1) while adding a cosine perturbation
of the form g(y) = A · cos(ω · y), for an amplitude A = 0.5 and a frequency
ω = 1. As may be noticed, unlike the linear case in which successive points
agglomerate into a single continuous function, this nonlinear case results in
an attractor that is a sparse collection of points. Such a set, obviously not a
continuous function, is found to repeat itself under increasing magnification
and has a similar fractal dimension as the interpolating function in Figure
1 (i.e., D ≈ 1.485). At the end, however, notice how the same multifrac-
tal measure dx gives rise now to other interesting projection sets dy, whose
overall features and textures are similar to those observed in Figure 1.

As a way of comparison, Figure 3 shows a statistical-multifractal analysis
of the “signals” in Figures 1 and 2. In addition to the projections themselves
(plotted left to right rather than bottom to top), the figures also include the
records’ autocorrelation functions (with the ±e−1 levels highlighted), their
power spectra (plotted in a log-log scale) and their multifractal spectra (i.e.
the “f vs. α” curve, Puente and Obregón, 1999).
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Even if the locations of the main peaks vary, both data sets share a sim-
ilar degree of complexity, as indicated by similar decay in autocorrelation
functions, power-law scaling in their power spectra (S(ω) ∼ ωβ), and multi-
fractal properties (as reflected by the close inverted parabolas in their mul-
tifractal spectra). More specifically, one finds that both signals share similar
statistical-multifractal qualifiers, as follows. They have, for the linear and
nonlinear cases, respectively, (a) fractal dimensions for the signals Ddy of
1.43 and 1.37 (not the dimension of their defining attractors G), (b) correla-
tion scales τe (defined when correlation reaches e−1) of 101 and 80 lags, (c)
spectral exponents β of -1.21 and -1.08, and (d) entropy dimensions D1 (the
shown intersection between the multifractal spectrum and the f = α line) of
0.88 and 0.85.

Overall, these characteristics (for both the linear and the nonlinear cases)
are similar to those found in practical environmental applications, such as
in rainfall and runoff studies. As such, the enhanced fractal-multifractal
framework provided by the addition of nonlinear perturbations becomes a
viable alternative worthy of further investigation. An initial exploration of
the vast array of (deterministic) sets that may be generated via this nonlinear
setting is presented next.

4 Sample Patterns via the Nonlinear Fractal-Multifractal Approach

Figure 4 presents a sensitivity analysis around the pattern generated via the
linear fractal-multifractal approach shown in Figure 1 (now portrayed on the
top of Figure 4), by adding the aforementioned cosine perturbation, varying
the amplitude A from 0 (i.e., the linear case) to 0.5 in increments of 0.125,
while having the frequency parameter fixed at ω = 2. As may be observed,
the main chunks as well as the major peaks of these interesting sets, all of
which may very well represent reasonable variations of a given phenomena
(e.g., rainfall), travel to the right as A is increased, while leaving close-to-zero
values, on the right hand side of the domain, mostly unchanged. As reported
in the caption, although these patterns share a similar fractal dimension Ddy

close to the average value of 1.30, they do not exhibit a monotonic behavior
in their other main statistical-multifractal qualifiers. For instance, there are
up and down variations in: (a) the fractal dimension of their underlying
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attractors D, (b) their correlation scales τe, (c) the negative of the spectral
exponents β, and (d) their entropy dimensions D1 (even if only slightly for
the first four sets).

It is worth noticing that the last set, corresponding to the lowest attrac-
tor dimension D, exhibits more areas of inactivity as compared to the other
sets. This happens because such an attractor is less capable than the others
of filtering the intermittencies and overall complexity of the parent multi-
fractal measure dx. Due to this fact, the autocorrelation function for such
a case decays very fast to zero, the spectral exponent yields a case close to
“1/f” noise, and the entropy dimension is low, indicating a high degree of
disorganization.

Figure 5 shows a similar sensitivity analysis to the one just mentioned, but
varying the frequency parameter ω on the cosine perturbation, while leav-
ing the amplitude fixed at A = 0.5. The sets shown correspond to equal
increments of ω values ranging from 0.5 (top) to 2.5 (bottom), and, hence,
the second pattern from the top corresponds to the one already presented
in Figure 2. Contrary to the previous sensitivity analysis, the signals here
maintain the locations of their main chunks and major peaks when the fre-
quency parameter is varied. Also, some noticeable trends may be discerned
regarding their statistical-multifractal attributes, as follows: (a) the fractal
dimensions of the attractors D and signals Ddy decrease, (b) their correlation
scales τe tend to decrease, and (c) the entropy dimensions D1 also decrease.

Although results regarding the power spectrum exponent β are not equally
conclusive, what was said of the last pattern in Figure 4 may also be said of
the last two sets in Figure 5. As the fractal dimensions of their underlying
attractors D are significantly lower than the other signals, such attractors
reflect, to a larger degree than those with higher dimensions, the intricacies
of the highly irregular parent multifractal measure dx. Overall and for the
particular set of parameters used, an increasingly oscillating perturbation
(i.e., as ω increases) has the ultimate effect of smoothing, by its increasing ups
and downs, an underlying fractal attractor G, and if a multifractal appears
in x such shall result in derived sets with increasing complexity (i.e., lower
τe and D1). However, care must be exercised, as shall be noted later, for an
increase in frequency does not necessarily imply a smoothing of an attractor.

As a means of continuing the exploration, Figure 6 presents other inter-
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esting patterns obtained via a sensitivity analysis of another more erratic set
as computed via the linear fractal-multifractal methodology (Puente, 2004,
Figure 7). Specifically, all patterns correspond to the interpolating points
{(0,0),(0.3,1), (1,0)}, vertical scalings d1 = 0.4, d2 = −0.5, a parent multi-
fractal parameter p = 0.4, a projection angle θ = −20 degrees, when varying
the cosine amplitude A from 0 (i.e., the linear case) to 1 in increments of
0.25, while having the frequency set at ω = 0.05. Given that the fractal di-
mensions of the attractors are lower than 1.2, all patterns exhibit an intense
level of activity reminiscent of “cyclical” environmental signals. As already
found in Figure 4, when the amplitude increases significantly, the resulting
signal contains periods of no activity and has an increasing complexity.

Notice how these “simulations,” although fully deterministic, may be used
to fully describe the apparent randomness found in applications. This is in-
deed a remarkable feature of these ideas that cannot be matched by stochastic
approaches, which by definition can only get realizations that match some of
the statistical-multifractal properties of the records. Although these patterns
show extremely similar statistical-multifractal characteristics, these sets are
indeed quite different from one another, strongly reminding us that statistical-
multifractal qualifiers do not fully characterize the variety of patterns that
can be generated through the (nonlinear) fractal-multifractal procedure, as
it is most likely found with natural sets.

Figure 7 further explores the parameter space of the nonlinear projections
via a sensitivity analysis on the frequency ω, as in Figure 5. Specifically, the
patterns correspond to the interpolating points {(0,0),(1/2,5), (1,4)}, vertical
scalings d1 = 0.9, d2 = −0.4, a parent multifractal parameter of p = 0.6, a
projection angle θ = 10 degrees, when varying the cosine frequency ω from 0.5
to 2.5 in increments of 0.5, while having the amplitude fixed at A = 0.5. As
may be discerned, none of the patterns shown corresponds to a linear fractal-
multifractal case. While the top pattern is reminiscent of other already found
in this brief exploration, the others show another host of plausible natural
sets having realistic statistical-multifractal qualifiers. Notice that, unlike the
results presented in Figure 5, an increase in the parameter ω does not lead to
a smoothing of an attractor. In conclusion, the sensitivity of our procedure on
the parameter ω is quite complex and not intuitive, as the interplay between
the iterations and the perturbation is not trivial.
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If the patterns shown were interpreted as hydrographs, observe how the
second one from the top would correspond to perhaps a single event having
a sustained rain. Such a pattern is also reminiscent of the width-function of
natural river networks (i.e., the number of links as a function of the distance
to the basin’s outlet, Puente and Sivakumar, 2003).

Figure 8 illustrates how plausible width-functions may be obtained from
appropriate variations in the amplitude parameters of the nonlinear pertur-
bations of a linear (bottom) fractal-multifractal projection (Puente, 2004,
Figure 6). As may be seen, the statistics of these patterns (except the power
spectrum exponent) are quite similar, yet the actual distributions exhibit dis-
tinct plausible shapes that may reflect the inner structure of a natural river
network. A research question inspired by these results could be to study how
the parameters of the width function change as a response to erosion mech-
anisms. This perhaps may be addressed via variations in the parameters of
the (nonlinear) projections.

As the choice of the bounded nonlinear perturbation is arbitrary, Figure 9
shows an example of what can be obtained by varying the functional shape
of the nonlinear perturbation. In this example, a sigmoid function g(y) =
A·(1+exp(−ω·y))−1 is used. As done before, a sensitivity analysis is presented
based on the linear case used in Figure 1, varying amplitude A from 0 (i.e.,
the linear case) to 0.5 in increments of 0.125, while keeping the “frequency”
at ω = 2. Notice that, for the set of parameters used, the choice of this
perturbation leads to fractal attractors of increasing dimensions, which leads
to increasing filtering of the parent multifractal, as reflected by an increasing
correlation scale.

This graph represents just an example of the manifold possibilities of ex-
tensions that can be envisaged when looking for geometric representations of
natural patterns. In this instance, as in the cosine case, further increasing the
amplitude integrates the derived measure dy towards a Gaussian distribution.
This result is quite interesting as it generalizes the roads to Gaussianity, via
space-filling fractal interpolating functions, already reported (Puente et al.,
1996, 1999). Details of such a case shall reported elsewhere.

In order to further understand the nature of the results presented herein,
Figure 10 shows the case when a uniformly random distribution, with varying
amplitude, is used as the nonlinear perturbation. One may wonder if adding
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A · cos(ω · y) to the linear maps is not equivalent to adding just a random
signal, as hinted by some of the evolutions shown. However, as may be seen,
increasing the amplitude of the noise tends unequivocally to locally smooth
out the original signal (i.e., as in Figure 1). This means that the fractal
attractor is being blurred by the addition of the noise, hence resulting in the
details of the projection being lost. As just mentioned, higher values of the
amplitude of the noise, for suitable values of the other parameters, lead to
Gaussianity, as may naturally be expected in the context of the Central Limit
Theorem (Puente, 2003).

5 Summary

It has been illustrated that extensions of the fractal-multifractal approach,
obtained by adding nonlinear and bounded perturbations to the linear equa-
tions to be iterated, yield fractal attractors not shaped as continuous fractal
interpolating functions that, nonetheless, result in a multitude of derived
measures that resemble patterns found in environmental applications. Such
patterns are interesting indeed in practice as they vastly extend the numer-
ous scenarios already defined via the original framework. As reported for
the linear fractal-multifractal methodology (Puente, 2004), the nonlinear ex-
tensions also provide patterns holistically encoded (at any resolution), which
are defined based on only a few parameters, yielding substantial compression
ratios easily exceeding 100:1.

In regards to the sensitivity cases herein, and many others not reported,
the following general trends may be established: (a) the derived patterns dy
depend, in a non-trivial way, on the nature of the nonlinear perturbation
added, whose most general form is g(y) = A ·h(ω · y), for a suitable bounded
function h; (b) “small” variations in the amplitude A (at small constant ω)
yield more stable scenarios than “small” variations in the “frequency” ω; (c)
the patterns obtained by adding the nonlinear perturbations are not equiva-
lent to those obtained by adding a white-noise perturbation, and an increase
in the amplitude of the white noise progressively smooths out a given signal;
and (d) we have encountered many combinations of the nonlinear parameters
that yield a Gaussian distribution as the derived pattern, dy, even though
the parameters of the linear maps do not imply a space-filling attractor, as
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previously required on the linear fractal-multifractal approach; In conclusion,
we have provided ample evidence that the linear and nonlinear fractal geo-
metric procedures described in this work are a viable alternative to existing
stochastic methods for the modeling of environmental information, hinting
to the possibility of hidden determinism in natural complexity. The question
whether simplicity may be found at the root of the complexity observed in
natural systems, lies at the root of modern science: we believe that the ideas
presented herein may indeed be a step in the right direction. Preliminary
results regarding extensions of the nonlinear ideas to patterns over two and
three dimensions also support the conclusions herein, details of which will be
reported elsewhere.

It is envisioned, pending a resolution of the required inverse problem for a
given observed pattern, that these notions, and other procedures aiming to
capture mathematical morphology explicitly, may result in a more complete
understanding of complex environmental systems and the dynamics of the
patterns they produce. This is particularly so, as the evolution of records
may perhaps be discerned in the compressed parameter space of subsequent
sets, without the need of resorting to difficult-to-solve (stochastic) differen-
tial equations whose structure and initial conditions may not be easily de-
termined. It is our hope that these geometry-based ideas aimed at capturing
the details in the data would make further inroads in environmental research.
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List of Figures

1. From a multifractal measure dx to a derived measure dy via a continuous
fractal interpolating function from x to y found via the iteration of linear
maps. Interpolating points: {(0,0),(1/2,-0.35), (1,-0.2)}, vertical scalings:
d1 = −0.8, d2 = −0.6, parent multifractal parameter: p = 0.3. (Measures
dx and dy are normalized so that they add up to one).

2. From a multifractal measure dx to a derived measure dy via a continuous
fractal interpolating function from x to y found via the iteration of non-
linear maps. Interpolating points: {(0,0),(1/2,-0.35), (1,-0.2)}, vertical
scalings: d1 = −0.8, d2 = −0.6, parent multifractal parameter: p = 0.3,
nonlinear perturbation: g(y) = A · cos(ω · y), A = 0.5, ω = 1.

3. Statistical and multifractal analyses of dy measures corresponding to the
linear (top) and nonlinear (bottom) map cases of figures 1 and 2. From
left to right: projection time series made of 4096 values, autocorrelation
function computed up to 1024 lags, power spectrum shown in log-log
scale, and multifractal spectrum “f (vertical) vs. α (horizontal).”

4. Sensitivity of derived measure dy to variations in perturbation ampli-
tudes A for a fixed frequency ω. Interpolating points: {(0,0),(1/2,-0.35),
(1,-0.2)}, vertical scalings: d1 = −0.8, d2 = −0.6, parent multifractal
parameter: p = 0.3, nonlinear perturbation: g(y) = A · cos(ω · y), A = 0
(top) to A = 0.5 (bottom) in increments of 0.125, ω = 1. Key statistics
(top to bottom): D = 1.49, 1.56, 1.55, 1.47, 1.30, Ddy = 1.35, 1.28, 1.30,
1.28, 1.29, τe = 101, 146, 250, 74, 10, β = −1.21, -1.55, -1.45, -1.12,
-0.98, D1 = 0.88, 0.89, 0.90, 0.87, 0.74.

5. Sensitivity of derived measure dy to variations in perturbation frequen-
cies ω for a fixed amplitude A. Interpolating points: {(0,0),(1/2,-0.35),
(1,-0.2)}, vertical scalings: d1 = −0.8, d2 = −0.6, parent multifractal pa-
rameter: p = 0.3, nonlinear perturbation: g(y) = A · cos(ω · y), A = 0.5,
ω = 0.5 (top) to ω = 2.5 (bottom) in increments of 0.5. Key statistics
(top to bottom): D = 1.49, 1.47, 1.41, 1.30, 1.19, Ddy = 1.37, 1.31, 1.29,
1.29, 1.31, τe = 137, 80, 19, 10, 10, β = −1.21, -1.08, -0.99, -0.98, -1.00,
D1 = 0.87, 0.85, 0.81, 0.74, 0.68.
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6. Sensitivity of derived measure dy to variations in perturbation amplitudes
A for a fixed frequency ω. Interpolating points: {(0,0),(0.3,1), (1,0)},
vertical scalings: d1 = 0.4, d2 = −0.5, parent multifractal parameter:
p = 0.4, projection angle: θ = −20 degrees, nonlinear perturbation:
g(y) = A · cos(ω · y), A = 0 (top) to A = 1.0 (bottom) in increments
of 0.25, ω = 0.05. Key statistics (top to bottom): D = 1.20, 1.20, 1.20,
1.15, 1.12, Ddy = 1.42, 1.42, 1.40, 1.42, 1.38, τe = 14, 27, 25, 25, 25,
β = −1.14, -1.08, -1.13, -1.07, -1.11, D1 = 0.91, 0.90, 0.88, 0.88, 0.76.

7. Sensitivity of derived measure dy to variations in perturbation frequencies
ω for a fixed amplitude A. Interpolating points: {(0,0),(1/2,5), (1,4)},
vertical scalings: d1 = 0.9, d2 = −0.4, parent multifractal parameter:
p = 0.6, projection angle: θ = 10 degrees, nonlinear perturbation: g(y) =
A · cos(ω · y), A = 0.5, ω = 0.5 (top) to ω = 2.5 (bottom) in increments
of 0.5. Key statistics (top to bottom): D = 1.19, 1.50, 1.53, 1.13, 1.54,
Ddy = 1.37, 1.44, 1.41, 1.29, 1.30, τe = 85, 417, 448, 262, 120, β = −1.11,
-1.00, -1.58, -1.27, -1.00, D1 = 0.81, 0.94, 0.91, 0.86, 0.85.

8. Sensitivity of derived measure dy to variations in perturbation amplitudes
A for a fixed frequency ω. Interpolating points: {(0,0),(1/2,1), (1,0)},
vertical scalings: d1 = 0.7, d2 = −0.7, parent multifractal parameter:
p = 0.5, projection angle: θ = 20 degrees, nonlinear perturbation: g(y) =
A · cos(ω · y), A = −0.5 (top) to A = 0 (bottom) in increments of 0.125,
ω = 0.5. Key statistics (top to bottom): D = 1.57, 1.56, 1.55, 1.55,
1.55, Ddy = 1.49, 1.49, 1.49, 1.49, 1.50, τe = 222, 210, 216, 218, 224,
β = −0.66, -0.66, -0.72, -0.75, -0.80, D1 = 0.99, 0.99, 0.99, 0.99, 0.99.

9. Sensitivity of derived measure dy to variations in perturbation ampli-
tudes A for a fixed frequency ω. Interpolating points: {(0,0),(1/2,-0.35),
(1,-0.2)}, vertical scalings: d1 = −0.8, d2 = −0.6, parent multifractal
parameter: p = 0.3, projection angle: θ = 0 degrees, nonlinear pertur-
bation: g(y) = A · (1 + e−ω·y)−1, A = 0 (top) to A = 0.5 (bottom) in
increments of 0.125, ω = 2. Key statistics (top to bottom): D = 1.50,
1.57, 1.62, 1.67, 1.72, Ddy = 1.35, 1.30, 1.27, 1.22, 1.26, τe = 101, 218,
228, 353, 394, β = −1.21, -1.51, -1.57, -1.66, -1.43, D1 = 0.88, 0.91, 0.88,
0.89, 0.89.
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10. Sensitivity of derived measure dy to variations in perturbation ampli-
tudes A of a uniform noise perturbation. Interpolating points: {(0,0),(1/2,-
0.35), (1,-0.2)}, vertical scalings: d1 = −0.8, d2 = −0.6, parent multifrac-
tal parameter: p = 0.3, projection angle: θ = 0 degrees, noise character-
istics: A = 0 (top) to A = 0.005 (bottom) in increments of 0.00125. Key
statistics (top to bottom): D = 1.50, 1.50, 1.51, 1.52, 1.53, Ddy = 1.35,
1.38, 1.40, 1.39, 1.40, τe = 101, 174, 192, 219, 234, β = −1.21, -1.60,
-1.15, -0.97, -0.82, D1 = 0.88, 0.90, 0.91, 0.92, 0.92.
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