Prospects for Integrating a Hollow Electron Lens into the LHC Collimation System

PDF Version Also Available for Download.

Description

It has been proposed to use a hollow electron lens with the LHC beam collimation system [1]. The hollow electron beam would be used as a beam scraper and positioned at a closer sigma than the primary collimators to increase the halo particle diffusion rate striking the primaries. In this paper we use multi-turn beam tracking simulations to analyze the effectiveness of such a lens when integrated into the LHC collimation system.

Physical Description

3 pages

Creation Information

Smith, Jeffrey Claiborne; /SLAC; Assmann, Ralph; Previtali, Valentina; Shiltsev, Vladimir; Valishev, Alexander et al. August 3, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

It has been proposed to use a hollow electron lens with the LHC beam collimation system [1]. The hollow electron beam would be used as a beam scraper and positioned at a closer sigma than the primary collimators to increase the halo particle diffusion rate striking the primaries. In this paper we use multi-turn beam tracking simulations to analyze the effectiveness of such a lens when integrated into the LHC collimation system.

Physical Description

3 pages

Source

  • Presented at Particle Accelerator Conference (PAC 09), Vancouver, BC, Canada, 4-8 May 2009

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-13745
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 962084
  • Archival Resource Key: ark:/67531/metadc931783

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 3, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 15, 2016, 3:29 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Smith, Jeffrey Claiborne; /SLAC; Assmann, Ralph; Previtali, Valentina; Shiltsev, Vladimir; Valishev, Alexander et al. Prospects for Integrating a Hollow Electron Lens into the LHC Collimation System, article, August 3, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc931783/: accessed June 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.