Predicting runaway reaction in a solid explosive containing a single crack

PDF Version Also Available for Download.

Description

Mechanically damaged high explosive (HE) undergoing defiagration has recently been shown capable of generating combustion pressures and flame speeds dramatically in excess of those observed in undamaged HE. Flame penetration of HE cracks large enough to support the reaction zone serves to increase the burning surface area and the rate of gas production. Cracks confine the product gas, elevating the local pressure and reducing the reaction zone thickness such that the flame can enter smaller-width cracks. As the reaction zone decreases sufficiently to enter the smallest cracks, the flame surface area will grow appreciably, rapidly pressurizing the cracks. This runaway ... continued below

Creation Information

Jackson, Scott I & Hill, Larry G January 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Mechanically damaged high explosive (HE) undergoing defiagration has recently been shown capable of generating combustion pressures and flame speeds dramatically in excess of those observed in undamaged HE. Flame penetration of HE cracks large enough to support the reaction zone serves to increase the burning surface area and the rate of gas production. Cracks confine the product gas, elevating the local pressure and reducing the reaction zone thickness such that the flame can enter smaller-width cracks. As the reaction zone decreases sufficiently to enter the smallest cracks, the flame surface area will grow appreciably, rapidly pressurizing the cracks. This runaway of pressure and burning area, termed combustion bootstrapping, can dramatically accelerate the combustion mode and in the most extreme cases may result in deflagration-to-detonation transition [3, 4]. The current study is intended to help predict the conditions required for the onset of reaction runaway in a narrow slot in HE. We review experiments [5] where flames were observed to propagate though a narrow slot (intended to simulate a well-formed crack) in high explosive at velocities up to 10 km/s, reaching pressures in excess of 1 kbar. Pressurization of the slot due to gas-dynamic choking is then used to predict the onset of runaway reaction. This model agrees with experimental pressure measurements of observed reaction runaway in slots.

Source

  • 22nd intl colloquium on the dynamics of explosions and reactive systems ; July 27, 2009 ; Minsk, Belarus

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-09-00153
  • Report No.: LA-UR-09-153
  • Grant Number: AC52-06NA25396
  • Office of Scientific & Technical Information Report Number: 956491
  • Archival Resource Key: ark:/67531/metadc931764

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 6:54 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Jackson, Scott I & Hill, Larry G. Predicting runaway reaction in a solid explosive containing a single crack, article, January 1, 2009; [New Mexico]. (digital.library.unt.edu/ark:/67531/metadc931764/: accessed September 26, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.