Production of direct drive cylindrical targets for inertial confinement fusion experiments

PDF Version Also Available for Download.

Description

We have made targets with cylindrical geometry for Inertial Confinement Fusion (ICF) experiments. These targets are used in hydrodynamic experiments on the OMEGA laser at the University of Rochester. The cylindrical design allows the study of three dimensional hydrodynamic effects in a pseudo 2D mode, simplifying data gathering and analysis. Direct drive refers to the fact that the target is illuminated directly by approximately 50 laser beams and is imploded by the material pressure generated from ablation of the outside of the target. The production of cylindrical targets involves numerous steps. These steps are shared in common with many other ... continued below

Physical Description

7 p.

Creation Information

Elliott, N. E. (Norman E.); Day, R. D. (Robert D.); Hatch, D. J. (Douglas J.); Sandoval, D. L. (David L.); Gomez, V. M. (Veronica M.); Pierce, T. H. (Timothy H.) et al. January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We have made targets with cylindrical geometry for Inertial Confinement Fusion (ICF) experiments. These targets are used in hydrodynamic experiments on the OMEGA laser at the University of Rochester. The cylindrical design allows the study of three dimensional hydrodynamic effects in a pseudo 2D mode, simplifying data gathering and analysis. Direct drive refers to the fact that the target is illuminated directly by approximately 50 laser beams and is imploded by the material pressure generated from ablation of the outside of the target. The production of cylindrical targets involves numerous steps. These steps are shared in common with many other types of ICF targets but no other single target type encompasses such a wide range of fabrication techniques. These targets consist of a large number of individual parts, all fabricated from commercially purchased raw material, requiring many machining, assembly, electroplating and chemical process steps. Virtually every manufacturing and assembly process we currently possess is involved in the production of these targets. The generic target consists of a plastic cylinder (ablator) that is roughly lmm in diameter by 2.25mm long. The wall of the cylinder is roughly 0.07mm thick. There is an aluminum cylinder 0.5mm wide and O.Olmm thick centered on the inside of the plastic cylinder and coaxial with the outside plastic cylinder. The outside of this aluminum band has surface finishes of differing random average roughness. The required average surface roughness is determined in advance by experimental design based on the amount of turbulent mix to be observed. The interior of the cylinder is filled with low density polystyrene foam that is made in house. To produce a finished target additional features are added to each target. X-ray backlighters are cantilevered off the target that allow time resolved x-ray images of the imploding target to be recorded during the experiment. The x-ray backlighters are driven by additional laser beams that are delayed to record an image at the appropriate time after the main beams are fired. An aperture to limit the area imaged and reduce x-ray background is placed on the target opposite the backlighters. Finally, alignment fibers that allow the target to be located precisely in three dimensional space before being shot are placed in several locations on the outside of the target.

Physical Description

7 p.

Source

  • Submitted to: 2003 Winter Topical Meeting, American Society for Precision Engineering, University of Florida - January 22-23, 2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-7655
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976494
  • Archival Resource Key: ark:/67531/metadc931692

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 12:48 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Elliott, N. E. (Norman E.); Day, R. D. (Robert D.); Hatch, D. J. (Douglas J.); Sandoval, D. L. (David L.); Gomez, V. M. (Veronica M.); Pierce, T. H. (Timothy H.) et al. Production of direct drive cylindrical targets for inertial confinement fusion experiments, article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc931692/: accessed December 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.