Casimir dependence of transverse distribution of pairs produced from a strong constant chromo-electric background field

PDF Version Also Available for Download.

Description

Recently the transverse distribution of particle production from strong constant chromo-electric fields has been explicitly calculated in Ref. 1 for soft-gluon production and in Ref. 2 for quark (antiquark) production. This particle production method, originally discussed by Heisenberg and Euler, Schwinger and Weisskopf, has a long history as a model of the production of the quark gluon plasma following a relativistic heavy ion collision. The physical picture considered here is that of two relativistic heavy nuclei colliding and leaving behind a semi-classical gluon field which then non-perturbatively produces gluon and quark-antiquark pairs via the Schwinger mechanism. At high energy large ... continued below

Creation Information

Cooper, Fred M; Mihaila, Bogdan & Dawson, John F January 1, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recently the transverse distribution of particle production from strong constant chromo-electric fields has been explicitly calculated in Ref. 1 for soft-gluon production and in Ref. 2 for quark (antiquark) production. This particle production method, originally discussed by Heisenberg and Euler, Schwinger and Weisskopf, has a long history as a model of the production of the quark gluon plasma following a relativistic heavy ion collision. The physical picture considered here is that of two relativistic heavy nuclei colliding and leaving behind a semi-classical gluon field which then non-perturbatively produces gluon and quark-antiquark pairs via the Schwinger mechanism. At high energy large hadron colliders, such as RHIC (Au-Au collisions at {radical}{ovr s} = 200 GeV) and LHC (Pb-Pb collisions at {radical}{ovr s} = 5.5 TeV), about half the total center-of-mass energy, E{sub cm}, goes into the production of a semi-classical gluon field, which can be thought to be initially in a Lorentz contracted disc. The gluon field in SU(3) is described by two Casimir invariants, the first one, C{sub 1} = E{sup a}E{sup a}, being related to the energy density of the initial field, where the second one, C{sub 2} = [d{sub abc}E{sup a}E{sup b}E{sup c}]{sup 2}, is related to the SU(3) color hypercharge left behind by the leading particles. So the question we want to study in this short note is how sensitive the transverse distribution is to this second Casimir invariant C{sub 2}. We have considered the dependence of the pair production rate of quarks and gluons from a strong chromo-electric field and have discovered that the effect of the second Casimir invariant of SU(3), which was not present in the electric field problem, effects the distribution by less than 15%. This event by event dependence of the transverse momentum distribution of jets on C{sub 2} may be something of interest at heavy ion colliders.

Source

  • Journal Name: Physical Review D

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-08-07521
  • Report No.: LA-UR-08-7521
  • Grant Number: AC52-06NA25396
  • DOI: 10.1103/PhysRevD.78.117901 | External Link
  • Office of Scientific & Technical Information Report Number: 956603
  • Archival Resource Key: ark:/67531/metadc931579

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2008

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 10:56 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cooper, Fred M; Mihaila, Bogdan & Dawson, John F. Casimir dependence of transverse distribution of pairs produced from a strong constant chromo-electric background field, article, January 1, 2008; [New Mexico]. (digital.library.unt.edu/ark:/67531/metadc931579/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.