Perterbative O(asa) matching in static heavy and domain-wall light quark system

PDF Version Also Available for Download.

Description

We discuss the perturbative O(a{sub s}a) matching in the static heavy and domain-wall light quark system. The gluon action is the Iwasaki action and the link smearing is performed in the static heavy action. The chiral symmetry of the light quark realized by using the domain-wall fermion formulation does not prohibit the mixing of the operators at O(a). The application of O(a) improvement to the actual data shows that the B meson decay constant f{sub B}, the matrix elements M{sub B} and the B parameter B{sub B} have non-negligible effects, while the effect on the SU(3) breaking ratio {zeta} is ... continued below

Creation Information

Ishikawa,T. July 14, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We discuss the perturbative O(a{sub s}a) matching in the static heavy and domain-wall light quark system. The gluon action is the Iwasaki action and the link smearing is performed in the static heavy action. The chiral symmetry of the light quark realized by using the domain-wall fermion formulation does not prohibit the mixing of the operators at O(a). The application of O(a) improvement to the actual data shows that the B meson decay constant f{sub B}, the matrix elements M{sub B} and the B parameter B{sub B} have non-negligible effects, while the effect on the SU(3) breaking ratio {zeta} is small.

Source

  • XXVI International Symposium on Lattice Field Theory; Williamsburg, VA; 20080714 through 20080719

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--82111-2009-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 951949
  • Archival Resource Key: ark:/67531/metadc931542

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 14, 2008

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Nov. 30, 2016, 4:24 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ishikawa,T. Perterbative O(asa) matching in static heavy and domain-wall light quark system, article, July 14, 2008; United States. (digital.library.unt.edu/ark:/67531/metadc931542/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.