Predicted Effects of Tritium Exposures on Fast-Acting Piezoelectric Valves for Gas Fueling at TFTR

PDF Version Also Available for Download.

Description

The prospects for using piezoelectrically-driven valves with elastomeric or thermoplastic poppets in tritium gas service have been investigated. A modelling study of a typical valve incorporating ethylene-propylene rubber (EPR) or high density polyethylene (HDPE) was performed. Equations were developed linking applied voltage; ceramic bimorph preloading force, elastic deflection modulus, and specific deflection force (per volt applied); polymer elastic modulus, thickness, seal surface area, and compression (to make seal); elastomer compression set; thermoplastic creep modulus; and flow gap between seat and polymer tip. It was determined that, while EPR should seal the valve orifice more easily, HDPE should produce a valve ... continued below

Creation Information

Gill, J. T. & Pierce, C. W. April 1, 1985.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The prospects for using piezoelectrically-driven valves with elastomeric or thermoplastic poppets in tritium gas service have been investigated. A modelling study of a typical valve incorporating ethylene-propylene rubber (EPR) or high density polyethylene (HDPE) was performed. Equations were developed linking applied voltage; ceramic bimorph preloading force, elastic deflection modulus, and specific deflection force (per volt applied); polymer elastic modulus, thickness, seal surface area, and compression (to make seal); elastomer compression set; thermoplastic creep modulus; and flow gap between seat and polymer tip. It was determined that, while EPR should seal the valve orifice more easily, HDPE should produce a valve flow rate vs. voltage curve less variant with time and exposure. Both should, however, be sealable and allow flow curves perturbed by less than or equal to 10% of full scale after ~100 days of exposure to 10{sup}5 Pa (1 atm) T{sub}2 gas (equivalent to ~7 x 10{sup}7 rad = 7 x 10{sup}5 Gy dosage).

Source

  • Second Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications, Dayton, Ohio, 30 April - 2 May 1985; also Fusion Technology, Special Supplement, September 1985

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: MLM-3266 (OP)
  • Grant Number: AC02-76CH03073
  • Grant Number: AC04-76DP00053
  • Office of Scientific & Technical Information Report Number: 967306
  • Archival Resource Key: ark:/67531/metadc931539

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 1985

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 6, 2016, 4:16 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gill, J. T. & Pierce, C. W. Predicted Effects of Tritium Exposures on Fast-Acting Piezoelectric Valves for Gas Fueling at TFTR, article, April 1, 1985; United States. (digital.library.unt.edu/ark:/67531/metadc931539/: accessed September 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.