
LA-UR- 0Cj-{)()c?/~

Approved for public release;
distribution is unlimited.

Title: I Dynamic Load Balancing of Matrix-Vector Multiplications on
Roadrunner Compute Nodes

Author(s): I 	Jose Carlos Sancho Pitarch, CCS-1

Darren J. Kerbyson, CCS-1

Intended for: I 	 Euro-Par 2009 Conference
Delft, The Netherlands
August 25, 2009

NATIONAt LABORATORY

E5T. 1943 ---

Los Alamos National Laboratory, an aHirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE·AC52·06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identity this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

1

Dynamic Load Balancing of Matrix-Vector
Multiplications on Roadrunner Compute Nodes

Jose Carlos Sancho and Darren J. Kerbyson

Performance and Architecture Laboratory (PAL),

Los Alamos National Laboratory, NM 87545, USA

Abstract. Hybrid architectures that combine general purpose proces
sors with. accelerators are being adopted in several large-scale systems
such as the petaflop Roadrunner supercomputer at Los Alamos. In this
system, dual-core Opteron host processors are tightly coupled with Pow
erXCell 8i processors within each compute node. In this kind of hybrid
architecture , an accelerated mode of operation is typically used to off
load performance hotspots in the computation to the accelerators. In this
paper we explore the suitability of a variant of this acceleration mode
in which the performance hotspots are actually shared between the host
and the accelerators. To achieve this we have designed a new load bal
ancing a'lgorithm, which is optimized for the Roadrunner compute nodes,
to dynamically distribute computation and associated data between the
host and the accelerators at runtime. Results are presented using this
approach for sparse and dense matrix-vector multiplications that show
load-balancing can improve performance by up to 24% over solely using
the accelerators.

Introduction

The unprecedented need for power efficiency is currently driven the design of hy
brid computer architectures that combine traditional general purpose processors
with specialized high-performance accelerators. Such a hybrid architecture has
been recently installed at Los Alamos National Laboratory in the form of the
Roadrunner supercomputer [1]. This system was the first to achieve a sustained
performance of over 1 PetaFlop/s on the UNPACK benchmark.

In Roadrunner, dual-core Opteron host processors are tightly coupled with
PowerXCell 8i processors [5] within each compute node. This hybrid archi
tecture can support several types of processing modes including: host-centric,
accelerator-centric , and an accelerated mode of operation . The characteristics of
an application determines which mode is most suitable. The host-centric mode
can be though of as the traditional mode of operation where applications solely
use the host Opteron processors. In the accelerator-centric mode applications
solely run on the Power XCell 8i. In the accelerated mode, both Opteron and
PowerXCell 8i are used in such a way that performance-critical sections of com
putation are off-loaded to PowerXCell 8i accelerators leav ing the rest of the code

2 Jose Carlos Sancho and Darren J. Kerbyson

to run on the host Opterons. SPaSM, a molecular dynamics code, is an example
of an application that followed this accelerated approach [10].

A variant of the accelerated mode is to share the performance hotspots be
tween both the accelerator and host processors for simultaneous processing. The
benefit of this is a potential gain in performance, since the computation power of
both the host processors and accelerators can be harnessed simultaneously, but
with an associated increase in complexity. The computation power of the host
processors may be orders of magnitude smaller than that of the accelerators but
at large-scale, including Roadrunner, the performance gain can be significant
and thus should be exploited. However, this kind of accelerated mode increases
complexity - extra tools are required in order efficiently and dynamicaUy load
balance between the hosts and accelerators at runtime. Undertaking such a load
balance during application execution is desirable in this context as it is difficult
to determine costs associated with individual computations at compile-time, and
there may be changes in the amount of data to compute per processor during
runtime which can result in repartitioning across nodes.

This paper addresses this challenge and presents a load balancing algorithm
in order to dynamically distribute the computation and associated data between
the host Opterons and the PowerXCell 8i accelerators at runtime in the compute
nodes of Roadrunner. For illustration purposes we address the common operation
of matrix-vector multiplications on the form of y = y + Ax, where A is either
a sparse or dense matrix and x and y are dense vectors. These operations are
commonly found in scientific applications and are prime candidates to offload
to accelerators. Results show that the dynamic load balancing algorithm can
improve the performance of these operations by up to 24% when using both
host and accelerator processors in comparison to solely using the accelerators. In
addition, the determination of the optimal load balance converges quickly taking
only 7 iterations. Quick convergence is desirable for a dynamic load balancing
algorithm in order to minimize its impact on the overall runtime. Although the
results as presented consider one compute node of Roadrunner, there is nothing
to prevent our technique to be applied to larger-node counts up to a system-wide
parallel job.

The rest of this paper is organized as follows. Section 2 describes the ar
.chitecture of a Roadrunner compute node. Section 3 describes our load balanc
ing algorithm. Section 4 briefly describes the implementation of matrix-vector
multiplications on the PowerXCell 8i and includes experimental results from a
Roadrunner node. Related work on matrix vector multiplications in hybrid ar
chitectures is summarized in Section 5. And finally, conclusions from this work
are given in Section 6.

2 The Roadrunner Compute Node

A compute node of Roadrunner is built using three compute blades and one
interconnect blade as shown in Figure 1. A single IBM LS21 blade contains two
1.8GHz dual-core Opteron processors, and two IBM QS22 blades each contain

3 Dynamic Load l3alancing of iViatrix-Vector Multiplications on Roadrunner

Fig. 1. The structure of a Roadrunner compute node.

two 3.2GHz PowerXCell 8i processors [5]. The fourth blade interconnects the
three compute blades using two ilroadcom HT2100 I/O controllers. These con
trollers convert the HyperTransport 16x connections from the Opterons to PCle
x8 buses - one to each PowerXCell 8i. In this configuration each Opteron core
is uniquely paired with a PowerXCell 8i processor when using the accelerated
mode of operation.

The PowerXCeH 8i processors have approximately 95% of the peak fioating
point performance and 80% of the peak memory bandwidth of a node respec
tively. Each PowerXCell 8i consists of eight Synergistic Processing Elements
(SPEs) and one Power Processing Element (PPE). The eight SPEs have an ag
gregate peak performance of 102.4 GFlops/s (double-precision), or 204.8 Flops/s
(single-precision) whereas dual-core Opteron has a peak performance of 7.2
GFlops/s (double-precision) or 14.4GFlops/s (single-precision). Therefore, the
PowerXCell 8i can potentially accelerate a compute-bound code by up to 28x
(102.4/3.6) over a single Opteron core. In addition, each PowerXCell 8i proces
sor has substantially more memory bandwidth than the Opterons, 25.6 GB/s
compared to 1O.7GB/s for a dual-core Opteron.

The PPE is a PowerPC processor core which runs the OS and manages the
SPEs. The SPEs are in-order execution processors with a two-way SIMD that do
not have a cache. Instead they can directly access a 256KB high-speed memory
called a local store which is explicitly accessed by direct memory access (DMA)
transfers from the PPE memory space. Each compute node has a total of 32GB
of memory evenly distributed across the six processors (Opteron and Power XC ell
8i) providing each with 4 Gil of memory.

The Dynamic Load Balance Algorithm

In this section we describe our dynamic load balancing algorithm applied to
matrix-vector multiplication. These operations are very time-consuming in codes

3

4 Jose Carlos Sancho and Darren J. Kerbyson

Titeration i ______ ..
·-·--··~""-----------·""··-------f- .

Opteron ! _. i

Network

PowerXCell 8i Teel l ,

Time

Fig. 2. Breakdown of iteration time (non-overlapping transfers) .

such as iterative soivers where the matrix-vector multiplication, YHI = y;+Ax, is
performed once or more in each iteration of the application. We chose a single row
of the matrix A as the smallest granularity of load-balancing the data between
the Opteron and PowerXCeli 8i. The goal of the load-balancing algorithm is
to find an optimal partitioning of the matrix rows to minimize the runtime
when this calculation is performed multiple times. Formally, the load-balancing
problem can be described as the following optimization problem:

n

Truntime = min 2)max(Topti + Transfer;, TcelL; + Ttmnsfer;) + Thousekeepingi)
i := 1

where T-,.untime is the total execution time of the matrix-vector multiplica
tion for n iterations; Topti and Tcell; are the times to perform the associated
matrix-vector multiplications on the Opteron and PowerXCeli 8i for iteration i;
Ttransfer; is the sum of times for receiving data to compute on the PowerX
Cell 8i (Trecvi) and for sending back the results (Tsendi) to the Opteron; and
finally, Thousekeepingi is the time associated for the load-balancing algorithm
and formatting the data for processing on the Power XCeli 8i.

vVe follow the operation of iterative solvers where the data that is trans
ferred in and out of the operation in each iteration are the vectors y.; and YH 1

respectively. The matrix A is considered constant as in most iterative solvers,
and hence it does not need to be transferred to the PowerXCeli 8i each iteration.
Similarly, the vector x also does not need to the transferred each iteration as it
is computed internally based on the residuals. Notwithstanding, there are appli
cations that the matrix A actually does change per iteration such as in the case
of Adaptive Mesh Refinement codes. For such codes, the dynamic load-balancing
algorithm would be re-run again in order to find the best load-balance for the
new matrix A when it is a sparse matrix. Usually, the strategy taken is to wait
until the number of changes in the matrix A are larger than a given threshold
in order to minimize the housekeep·ing costs associated with load-balancing.

From the point of view of one iteration, the optimization problem is reduced
to the case illustrated in Figure 2 that shows the elapsed times on the Opteron,

5 Dynamic Load Balancing of Matrix-Vector Multiplications on Roadrunner

PowerXCeli Si, and the intranode-connection network in the case that the data
transfers are not being overlapped with the computation. When the transfers
are not overlapped, there is an additional cost for both the Opteron and Pow
erXCeli Si that needs to be taken into account in the minimization problem.
Therefore, we want to minimize both Topt + Ttransfer and Teell +Ttra.nsfer
at the same time, i.e. minimize ma.x(Topt +Ttransfer, Teell +Ttransfer). By
distributing the data carefully between processors it is possible to achieve the
optimal balance that minimizes the above expression. For example, in the case
that the PowerXCeU Si has to much to compute, we can move some of data to
the Opteron which reduces both Teell and Ttransfer at expenses of increasing
Topt . Careful attention should be taken to prevent the case that the Opteron has
too much data to compute, Topt > Teell, which will also increase the iteration
time. In the converse case, that the Opteron has too much data, some data can
be moved from the Opteron to the PowerXCell Si. Note again that assigning
more data to the PowerXCell Si in the next iteration, i + 1, means that both the
TeellHl and TtransferHl will be increased. And therefore, the iteration time
may be larger because the TtransferHl might be too high to offset the reduc
tion in time on the Opteron, Topti+l + Ttransferi+l > TOPti + Ttransfer;. It
can also occur that the cell has to much data to compute with respect to the
Opteron, Teelli+l > ToptHl'

When the data transfers can be fully overlapped with computation, the load
balancing is simplified to the case of making the compute-times on both the
Opteron and PowerXCell Si equal, Topt ~ Teell, in order to minimize the fol
lowing expression max(Topt, Teet!). This is an ideal case that might be diffi
cult to achieve in a real scenario because it depends on the application's data
dependencies- data is not available yet because it needs to be combined with'
other data such as in the case of iterative solvers-, and the support of asyn
chronous operations on the communication system. Although, Roadrunner sup
ports asynchronous communications, the data dependencies can prevent fully
overlapped operation. Hence; the common scenario is that communications are
only partially overlapped and the optimization problem described in Figure 2
applies.

In addition, the housekeeping cost of the load balancing algorithm is only
paid during the time to converge. Once the algorithm has converged the data
structures are set up in the optimal load-balance configuration, and thus no
further load-balancing is required . Therefore, it is desirable to converge as fast
as possible in order to minimize the impact of the housekeeping costs on the
runtime of the application.

The load-balancing algorithm proposed is based on combining the following
three basic approaches: accelerator-centric, performance-based, and trial-and
error in order to converge at the optimal state as quickly as possible. This al
gor,ithm is comprised of six states as depicted in Figure 3. For the sake of this
description, ratio is defined as the percent of data that is assigned to the Opteron
per iteration. In the first state, we take an accelerator-centric approach where
ratio is initialized to be Peak celli Peak opt, where Peak cell and Peak opt are

6 .Jose Carlos Sancho and Darren J. Kerbyson

Toteration current < Titeration previous

Toteration current >= Titeration previous

Fig. 3. States of the ;Ioad balance algorithm.

the peak flop performance of the PowerXCell 8i and Opteron, respectively. In
Roadrunner, ratio is initialized to be 28, see Section 2. We use the peak per
formance of the processors as an starting point as this is available a priori. In
principle, we do not know anything about the characteristics of the code and
the peak flop performance is a save alternative in this architecture with respect
to the peak memory bandwidth because most of the work will be performed on
the PowerXCell 8i rather than the Opteron.

In the second state, we take a performance-based approach since we can
collect actual timing information. The principle of a performance-based approach
is to distribute data based on how well the different processors perform, and thus
allowing the algorithm to quickly converge to the optimal ratio. This is achieved
by collecting the times, Topt and Tcell, in order to calculate the processing rates,
Bcell and Bopt, for both the Opteron and PowerXCell 8i.

Note that Tcell and Ttransfer are measured independently instead of com
bining them into a single metric . This distinction is more efficient than the typical
combination approach of as will be shown in the next section. In this state, when
Topt >= Tcell then the Opteron has been assigned too much data. However,
the ratio was set up already small, and hence, those processors should no longer
be considered and the load-balancing is placed in the stop) state with ratio = O.
'When Topt < Tcell then the Opteron has capability to undertake more work
and thus the ratio is set based on the current measured processing rate of the
processors (Bcell/ Bopt). Additionally, we measure the execution time per itera
tion (Titeration) which takes into account the Ttransfer for the next iteration
of the load-balancing algorithm.

Finally, the third and fourth steps are performed using a trial-and-error
load-balancing strategy until the optimal balance is achieved. This is done by
carefully assigning more or less data on the Opteron in order to not increase
the Titeration. Note that these additional steps are not included in a typical
performance-based load balancing strategy, but they were necessary for the case
of this particular architecture. In particular, the third step gradually decreases

Dynamic Load Balancing of Matrix-Vector Multiplications on Roadrunner 7

ratio in the case that Topt < Tcell, so assigning more data to the Opteron. Sim
ilarly, the fourth step gradually increases ratio in the case that Topt >= Tcell
assigning less data to the Opteron. Convergence is achieved when the current
Titeration is higher than the previous Titeralion time stopping the algorithm
in state stop2. Note again , that for the case of fully overlapping transfers these
additional states might not lead to the optimal balance as state 2 should already
give a good balance due to the fact that it is based on the achieved processing
rate and the transfer time does not impact on the iteration time. However, these
states are necessary in the case of partially overlapping and non-overlapping
transfers where the transfer time does actually impact the iteration time.

This algorithm executes on the Opteron cores per each of the four host
accelerator pairs available in the Roadrunner nodes following a typical global
centralized strategy [13]. In this scheme resul ts from the load-balancing are sent
to the other processors for use in their data distribution in the next application
iteration.

4 Evaluation

vVe evaluate our load-balancing technique on a Roadrunner compute node as
described in Section 2. A four-process parallel job was executed in the accelerated
mode of operation that performed a matrix-vector multiplication several times.
At the end of the calculation all the processes synchronize in order to account
for the worst time. Timing data presented below are averages over multiple runs.
We use the DaCS communication library [3] for communicating between Opteron
and PowerXCeli 8i processors, and OpenMPI version l.3b [8] message passing
library for the synchronization across Opterons. The Cell BE SDK version 3.1
was used to compile the code for the PowerXCeli 8i processors.

vVe evaluated the performance of our load-balance technique, Optimized bal
ance, as well as for the case using our load-balance algorithm but considering
Ttransfer in combination with Tcell, Balance Ttransfer. Also for comparison
purposes we evaluated the performance of using no load balancing in two cases:
using only Opterons and using only PowerXCell 8i processors. In addition, for
illustration purposes we show results for a Greedy strategy that searches for the
optimal load-balance by exploring a wide range of ratios: it starts with the de
fault ratio (Peak celli Peak opt) and gradually decrements it every iteration to
when all work is performed by the Opteron. The experiments were conducted
on a dense matrix and on seven sparse matrices from a wide variety of actual
applications as listed in Table l.

The calculation of the matrix-vector multiplications for dense matrices fol
lows a straightforward implementation on the PowerXCe1l8i that directly streams
the vectors :r and y and the matrix A for computing on the SPEs. Due to the
limited size of the local-store we need to transfer data into each SPE as needed
using DMAs. In the case of matrix A, we assume that each DMA transfer con
tains one or more entire rows when using a single DMA of 16KB maximum size.
Also, matrix A is evenly partitioned among the eight SPEs in each PowerX

8 Jose Carlos Sancho and Darren J. Kerbyson

Table 1. Description of the matrices used in the evaluation.

Name Dimensions Non-zeros Description

Dense matrix 2Kx2K 41'1 Regular dense matrix
Sparse Harbor 47Kx47K 2.371'1 3D CFD of Charleston harbor
Sparse Dense 2Kx2K 4M Dense sparse matrix
Sparse Fluid 20.7Kx20.7K 1.4lM Fluid structure interaction turbulence
Sparse QCD 49Kx49K 1.90M Quark propagators (QCD/LGT)
Sparse Ship 14lKx 14lK 3.98M FEM ship section/detail production

Sparse Cantiveler 62Kx62K 4M FEM cantiveler
Sparse Spheres 83Kx83K 6M FEM concentric spheres

Cell 8i following a row partitioning scheme. This partitioning evenly distributes
consecutive rows across the SPEs.

In contrast, the implementation for sparse matrices is a little more complex
because it has to deal with the irregularity of the memory access due to the
sparsity of the data in the matrix. We used the Compressed Storage Row (CSR)
format [2] for defining the sparse matrL\: (A) . The CSR format basically uses two
data structures, the row pointer to index the start of each row with the non-zero
elements in A, and the coLumn pointer to index the column each e[ement is asso
ciated with. Note that both the row and column pointers for the Power XC ell 8i
implementation have to be properly re-encoded to be SPE local-store relative.
Due to the sparsity of A we cannot use a regular Dr-irA transfer to bring the
corresponding :1: vector elements into local-store. Rather we use a special DMA
transfer, get List, which gathers independent x elements fmm main memory and
packs them contiguously in the local-store. I3ecause every DMA's source ad
dresses must be 16-byte aligned, some additional padding may be needed if the
source address differs from the one required. Note that we only transfer to the
local-store unique x elements required for each DMA of A obviating in this way
any repetition of these elements among the various rows fitted in a DMA. The
prepocessing described above is a part of the housekeeping in the load-balancing
algorithm.

4.1 Results

Figure 4 shows the iteration time for the Greedy, Optimized baLance, and the
BaLance Ttransfer techniques on the sparse matrix Harbor. As can be seen,
the minimum execution time is found at iteration 24 for the Greedy technique,
where ratio = 5. At this point the optimal load balance is achieved and the
execution time is improved by 15% with respect to using the default ratio
(ratio = BceLL/ Bopt), and 3.4x with respect to ratio = 1 (iteration number
28) where all the work is performed by the Opterons. The Greedy technique can
easily find the optimal balance, but at the expense of a longer converge time (28
iterations) which is undesirable. In contrast, the Optimized baLance technique
converges faster and is able to find the optimal balance after only 5 iterations.
Converging faster is desirable as there is extra overhead due to housekeeping per

http:20.7Kx20.7K

9

1

Dynamic Load Balancing of Matrix-Vector Multiplications on Roadrunner

- "'HdV __~ance Ttrartwr

- Optimized ~LJnce

I
7 1: 1

f- _"" I -..., 1 a """

~ J.... ;""":::;::::::::::::;;:::::=::::::::::;=::=", /

_ TlIlnsfer
. Topt

I 2 l ~ ll 1 "~ 11111Jl~ " U l' ~l~~nuu ~ n n l' a . T«il
.....- • Ti~.(ion

Fig. 4. Iteration time for the Greedy, Fig. 5. Iteration time breakdown for
Optimized balance, and Balance the Optimized balance technique on
Ttransfer techniques on the sparse the sparse matrix Harbor (first five it
matrix Harbor. erations).

iteration which could be significant, see Section 3. In the case of the Roadrun
ner compute node this time is arollnd 60ms per iteration. For the case of the
Balance Ttransfer technique we can see that the load-balance algorithm does
not converge to the optimal solution. This is because including the Ttransf cr
in the Tcell makes the mtio too low (ratio = 2) for this architecture due to
Ttransfer being high. This forces the search to stop too early, in state 3 of the
algorithm, as the next ratio tried unfortunately does not use the accelerators at
all (ratio = 1).

Figure 5 illustrates how the Optimized balance technique converges to the
optimal balance during the first 5 iterations by showing the corresponding times
Topt, Tcell , TtmnsfeT, and Titeration for each iteration. On the first iteration,
Topt is too small compared with the Tccll because the default ratio yields too
little work for the Opterons compared with the PowerXCell 8i. On the second
iteration, the ratio is already fixed to the current performance of the processors
(Bcell/ Bopt = 4), but actually results in too much work for the Opterons. On
the third and fourth iterations, the load-balance algorithm is in state 4 increasing
the ratio in order to gradually reduce the work on the Opterons. During this,
it is found that the third iteration results in a better T i teration time with
Tatio = 5 than the fourth iteration, and so the algorithm stops on the fifth
iteration taking the tested best ratio (ratio = 5) for subsequent iterations. At
the optimal balance, 41% of the iteration time is spent on the Topt , and 38%
and 22% is spent for the Tcell and Ttransfer, respectively.

Figure 6 summarizes the execution iteration time for the suite of matrices
evaluated when using Optimized balance (once the algorithm converged) , when
using the Opteron only and when using the PowerXCeli 8i only. As can be seeu,
the Optimized balance achieves the best runtimes for all the matrices evaluat.ed.
In particular, for the dense matrix the performance improvement is 14% for
the Optimized balance in comparison to using only the PowerXCeli 8i. For the

- .

http:evaluat.ed

10

5

Jose Carlos Sancho and Darren J. Kerbyson

~ ------------------------------------~

J= f
.§.

. Opteron

• PowerXC eli 8i

. Optimized balance

~:: f-

" .
5 -

s

' ~r: ~ -1-1-· • • ••
I • • .

~rt<;'I! 	 'Sp.II'1 e ~",.e ~ Splll\ o:l Sp.,ors e Sp6~'" 5iJI.r.e
H.vbor ~ ~1uId QCD Ship c~ S~"

M.trices

Fig.6. Execution time for each matrix
when using: only the Opteron, only the
PowerXCell 8i, and the Optimized balanc
ing technique.

SpJl~l' Sp .lr\ 1t Sp./WW s,p.ll r\ i! 5op.,,1..., S p;lf3.t! s~.

H.ubor Do!;n s,ot Fluid QeO Ship Ctnr N-'l1er Sphet.

M.trlCe'5

Fig. 7. Number of iterations required
for convergence when using the Op
timized balancing technique for the
testbed matrices.

sparse matrices the improvements are 19%, 18%, 19%,23%, 23%, 24%, 22% for
the sparse matrices Harbor, Dense, Fluid, QCD, Ship, Cantiveler, and Spheres
respectively. These improvements are mostly due to the fact that the computa
tion of the sparse matrices is actually memory bound and thus take advantage
of the relatively better memory performance of the Opterons rather than their
flop performance. As expected, the improvements with respect to the Opteron
are more noticeable, ranging from 4 x on the sparse Fluid up to 6 x for the dense
matrix. Also, the number of iterations for the load-balancing to converge for
these matrices is small as shown in Figure 7. For the sparse matrices 5 iterations
are required for convergence whereas the dense matrix required 7 iterations.

An additional result (not shown in this paper), is the application of our load
balancing technique to the STREAMS microbenchmark [6] that does vector
operations instead of matrix-vector operations. Specifically, STREAMS calcu
lates the following y = y + c x x, where y and x are dense vectors and c is a
constant. The results of this type of computation showed that the load balanc
ing technique is giving an additional 10% performance increase in comparison
to using only the PowerXCeli 8i accelerators. For interested readers, the total
aggregate memory bandwidth achieved on a Roadrunner compute node using
our load balance algorithm was 89GB/s.

Related work

Matrix operations including sparse matrix-vector multiplications (SpMV) are
key computational kernels in many scientific applications, and thus have been
extensively studied. Today most work is focused on implementing these oper
ations on emerging architectures including the Cell BE [12], FPGAs [7], and
GPUs [4], as well as multi-core processors [12]. Although our SpMV implemen
tation might not be so highly tuned for a particular processor in comparison to

Dynamic Load Balancing of i\i[atrix-Vector Multiplications on Roadrunner 11

other implementations, they could be incorporated into our accelerator and host
load-balancing method in order to improve overall performance.

On the other hand, there has been very little work on load-balancing ma
trix operations on hybrid (host-accelerator) architectures since typically they
are fully offioaded to the accelerators. However, there is a significant work on
load-balancing matrix operations like the Sp?vIV on heterogeneous network of
workstations (HNOWs) [13,9,11]. These systems are composed of non-uniform
processors, network, and memory resources which partially resemble the hybrid
platform studied in this work. For HNOWs most of the algorithms are optimized
based on the characteristics of the target system. In fact as stated in [13] there
is not a unique general solution for all platforms but rather different schemes are
best for different applications and system configurations. This result is interest
ing because it suggests that there should be an efficient load balancing technique
as well for our target platform. In particular, our platform is quite different from
HNOWs. The processors are tightly attached to each other, so communications
are much faster than in HNOWs. Also, there is a huge difference in the comput
ing power of the processor types. These two features open new considerations in
the design of load-balancing algorithms that they were not previously important.
For example, in this new enviwnment with fast commun,ications it makes more
sense to explore fine-grain load balancing algorithms, such as the one proposed
in this paper, based on a trial-and-error strategies.

Additionally, in most of the load-balancing strategies for HNOWs distribut
ing the load in proportion to the computing speed of the processors always leads
to a perfectly balanced distribution [13,9]. However, we found that this strategy
was not enough to achieve an optimal solut,ion for our platform. In summary, our
work represents a step ahead in load-balancing algorithms which is particularly
targeted to the hybrid, host-accelerator, architecture of Roadrunner. Notwith
standing, it would be interesting to evaluate as a future work the suitability of
our proposed load-balancing algorithm to other hybrid platforms.

6 Conclusions

An optimized load balancing algorithm has been presented in this paper to sub
stantially increase the performance of a Roadrunner compute node. We have
demonstrated that the proposed load-balance algorithm achieves a significant
performance improvement, up to 24%, when simultaneously using both host
(Opteron) and accelerator (PowerXCell 8i) processors in comparison to solely
using the Power XC ell 8i processors in a traditional accelerated mode of opera
tion. The load-balancing was evaluated for matrix-vector multiplications which
are commonly found in scientific applications, but other operations, including
the STREAMS benchmark, have also showed a significant performance improve
ment of up to 10%.

These improvements come from the concurrent exploitation of the computa
tion power of the host Opteron processors at the same time as the PowerXCell 8i
accelerators for processing hotspot computations rather than uniquely offioading

" \I

12 Jose Carlos Sancho and Darren J. Kerbyson

to the accelerators. These results suggest that the traditional accelerated mode
of operation is not efficient enough to exploit the full potential of the hybrid
architectures including Roadrunner. With effective load-balancing techniques a
more complex, but better accelerated mode of operation, can be enabled exploit
ing concurrently the full potential of all the available processors. In addition, the
load-balance algorithm was carefully optimized to provide fast convergence time
(7 iterations) making it sufficiently efficient to run during the execution of an
application. This feature is desirable in order to dynamically adapt to the charac
teristics of the code, and thus it can potentially server as a general load-balancing
algorithm on this platform for other hotspot computations.

References

1. 	 K. J. Barker, K. Davis, A. Hoisie, D. J . Kerbyson, M. Lang , S. Pakin, and J. C . San
cho, Entering the Petafiop Era: The Architecture and Performance of Roadrunner,
Supercomputing Conference (SC08), Austin, TX, November, 2008.

2. 	 R. Barrett, M. Berry, T. F. Chan, J . Demmel, J. M. Donato, J. Dongarra, V. Ei
jkhout, R. Pow, C. Romine, and H. V. der Vorst, Templates for the Solution of Lin
ear Systems: Building Blocks for Iterative IVIethods, 2nd Edition , SIAl'.-I , Philadel
phia, 1994.

3. 	 Data Communication and Synchronization Library for Hybrid-x86: Programmer's
Guide and API Reference. IBl'vI Technical document SC33-8408-00. IBM SDK for
Multicore Acceleration version 3, release O. 2007.

4. 	 M. Garland, Sparse matrix computations on manycore GPU's, Annual ACM IEEE
Design Automation Conference (DAC08), pp. 2-6, Anaheim , CA, June, 2008.

5. 	J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. i'vIaeurer, and D. Shippy,
Introduction to the Cell Multiprocessor, IBM Journal of Research and Development,
49(4), pp. 589-604, 200·5.

6. 	 J . McCalpin, lVIemory Bandwitdh and Machine Balance in Current High Perfor
mance Computers, IEEE Computer Society Technology committee on Computer
Architecture (TCCA) Newsletter, pages 19-25, December 1995.

7. 	 G. R. Morris and V. K. Prasanna, Sparse Matrix Computations on Reconfigurable
Hardware, IEEE Computer, 40(3), pp. 58-64, 2007.

8. 	 Open-l\IPI, http://www.open-mpi.org
9. 	 J. F. Pineau, Y. Robert, and F. Vivien, Revisiting matrix product on master-worker

platforms, Workshop on Advances in Parallel and Distributed Computational Mod
els (APDCM07) , Long Beach, CA, ~Iarch, 2007.

10. 	 S. Swaminarayan, K. Kadau, and T . C. Germanm. 350-450 Tfiops Molecular Dy
namics Simulations on the Roadrunner General-purpose Heterogeneous Supercom
puter. ACM Gordon Bell Prize finalist, Supercomputing COllference (SC08). Austin,
TX, November, 2008.

11. 	 C. Xu and F. Lau, Load Balancing in Parallel Computers: Theory and Practice,
Kluwer Academic Publishers, 1996.

12. 	 S. Williams, L. Oliker, R. Vuduc, J . Demmel, and K. Yelick, Optimization of Sparse
fvIatrix-Vector Multiplication on Emerging Multicore Platforms, Supercomputing
Conference (SC07), Reno, NV, November, 2007.

13. 	 M . .1. Zaki, W. Li, and S. Parthasarathy, Customized Dynamic Load Balancing for
a Network of Workstations, Parallel and Distributed Computing, 43(2), pp. 156-162,
1997.

http:http://www.open-mpi.org

