AN IMPROVED CRITERION FOR NEW PARTICLE FORMATION IN DIVERSE ENVIRONMENTS

Chongai Kuang, Brookhaven National Laboratory
Ilona Riipinen, Carnegie Mellon University
Sanna-Liisa Sihto and Markku Kulmala, University of Helsinki
Alon McCormick and Peter McMurry, University of Minnesota

For presentation at the First Science Team Meeting of the Atmospheric System Research (ASR) Program, Bethesda, MD March 15-19, 2010

Environmental Sciences Department/Atmospheric Sciences Division
Brookhaven National Laboratory
P.O. Box, Upton, NY
www.bnl.gov

ABSTRACT
A dimensionless theory for new particle formation (NPF) was developed, using an aerosol population balance model incorporating recent developments in nucleation rates and measured particle growth rates. Based on this theoretical analysis, it was shown that a dimensionless parameter \(L_g \), characterizing the ratio of the particle scavenging loss rate to the particle growth rate, exclusively determined whether or not NPF would occur on a particular day. This parameter determines the probability that a nucleated particle will grow to a detectable size before being lost by coagulation with the pre-existing aerosol. Cluster-cluster coagulation was shown to contribute negligibly to this survival probability under conditions pertinent to the atmosphere. Data acquired during intensive measurement campaigns in Tecamac (MILAGRO), Atlanta (ANARChE), Boulder, and Hyytiälä (QUEST II, QUEST IV, and EUCAARI) were used to test the validity of \(L_g \) as an NPF criterion. Measurements included aerosol size distributions down to 3 nm and gas-phase sulfuric acid concentrations. The model was applied to 77 NPF events and 19 non-events (characterized by growth of pre-existing aerosol without NPF) measured in diverse environments with broad ranges in sulfuric acid concentrations, ultrafine number concentrations, aerosol surface areas, and particle growth rates (nearly two orders of magnitude). Across this diverse data set, a nominal value of \(L_g = 0.7 \) was found to determine the boundary for the occurrence of NPF, with NPF occurring when \(L_g < 0.7 \) and being suppressed when \(L_g > 0.7 \). Moreover, nearly 45% of measured \(L_g \) values associated with NPF fell in the relatively narrow range of \(0.1 < L_g < 0.3 \).

NOTICE: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.