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Whistler Wave Excitation and Effects of Self-Focusing on Ion Beam Propagation through a

Background Plasma along a Solenoidal Magnetic Field

Mikhail A. Dorf, Igor D. Kaganovich, Edward A. Startsev, and Ronald C. Davidson
Plasma Physics Laboratory, Princeton, New Jersey, 08543

This paper extends studies of ion beam transport through a background plasma along a solenoidal

magnetic field [I. Kaganovich et al., Phys. Plasmas 15, 103108 (2008)] to the important regime of moderate

magnetic field strength satisfying @, >2f,®,, . Here, @, and ®,, are the electron cyclotron frequency

and electron plasma frequency, respectively, and £, =v, / c is the directed ion beam velocity normalized to

the speed of light. The electromagnetic field perturbations excited by the ion beam pulse in this regime are
calculated analytically, and verified by comparison with the numerical simulations. The degrees of beam
charge neutralization and current neutralization are estimated, and the transverse component of the Lorentz
force associated with the excited electromagnetic field is calculated. It is found that the plasma response to

the ion beam pulse is significantly different depending on whether the value of the solenoidal magnetic field
is below or above the threshold value specified by @;, = Zﬂba)pe, and corresponding to the resonant

excitation of large-amplitude whistler waves. The use of intense whistler wave excitations for diagnostic

purposes is also discussed.
I. INTRODUCTION

Neutralization and focusing of a charged particle beam by a background plasma form the
basis for a variety of applications to high energy accelerators and colliders'?, ion-beam-driven
high energy density physics and fusion®*, and astrophysics>®. For instance, one of the modern
approaches to ion beam compression for heavy ion fusion applications is to use a dense
background plasma which charge neutralizes the ion charge bunch, and hence facilitates
compression of the bunch against strong space-charge forces®* . Additional control and focusing
of the beam pulse can be provided by the application of a solenoidal magnetic field in the

. . 9.10,11,12,13
neutralizing region™ ™ >~

. It has recently been demonstrated that even a weak magnetic field
can significantly change the degrees of charge neutralization and current neutralization of an ion

beam propagating through a background plasma'*">. In Refs. [14, 15] detailed analysis of an ion



beam propagating through a neutralizing plasma background along a solenoidal magnetic field has

been performed for the regime of a weak applied magnetic field satisfying o, <2f,0,,, where

w,, and @, are the electron cyclotron and plasma frequencies, respectively, and S, =v, Jc is the

directed ion beam velocity normalized to the speed of light c. In this paper, we extend earlier

studies of nonrelativistic beam neutralization to the case where @, >2f,0, . An important

difference between the two regimes appears to be due to excitation of electromagnetic wave-field

perturbations, which propagate oblique to the beam axis for the case where the applied magnetic

field exceeds the threshold value corresponding to @ =2f,w, . Therefore, the slice
approximation previously used for the analysis of the case where @, <2f5,0,, in Refs. [14, 15],

and not taking into account the effects of coupling between the longitudinal and transverse
dynamics cannot, in general, be applied in the present studies, and a different approach has to be

developed. Note that the threshold value of the magnetic field can be expressed as
3 11\Y2 . . . .
B =2p, (np I:cm ]/10 ) kG . For instance, for an ion beam with S, ~0.05 propagating

through a background plasma with density np~10ll cm™, this corresponds to a relatively weak
magnetic field of 100 G.

In the present analysis, we consider a fast ion beam pulse with velocity much greater than
the Alfven velocity, and therefore the beam ions cannot interact effectively with ion Alfven wave
excitations. Furthermore, we assume a smooth beam density profile with a characteristic axial

length scale for density variation, /,, much greater than the wavelength of electron plasma wave
excitations, [, >>v, / w,, . Therefore, electrostatic electron plasma wave excitations are also

significantly suppressed'®'’. However, if a sufficiently strong ambient magnetic field with

o, >2p,0,, is present inside the neutralizing region, the ion beam pulse can effectively interact

with the electromagnetic electron whistler branch of the plasma dispersion relation'®'?. Therefore,
in the present paper we analyze excitation of the whistler branch by an ion beam pulse propagating
through a neutralizing plasma along a solenoidal magnetic field, and assess its influence on the
degrees of beam charge neutralization and current neutralization, and the transverse beam
dynamics.

The fundamental problem of whistler wave-field perturbations excited by a charged

particle beam propagating in a magnetized plasma has been extensively studied for several



q'%-20-21:22:23.24 "Recent interest in this problem

decades, and various methods have been develope
has been motivated by possible use of charged particle beams for space communications.
Propagating in the magnetized ionosphere or the magnetosphere plasma, charged particle beams
can excite whistler wave-field perturbations, and therefore can be used as compact on-board
emitters in the very-low-frequency range, replacing large-apertures electromagnetic antennas'®>'.
Analytical and numerical studies of whistler branch excitations by a density-modulated electron
beam propagating through a background plasma along a uniform magnetic field, including both

linear and nonlinear effects have been reported in Refs. [22-24]. However, in those calculations the

case of a thin beam with 7, << k' has been considered, and the effects of the transverse beam
structure have not been taken into account. Here, 7, is the characteristic beam radius, and %, is the

perpendicular component of the whistler wave vector. Note that in contrast to space-physics
phenomena, where the wavelength of the whistler waves is large compared to the beam radius, for
the parameters typical of neutralized intense ion beam transport applications, the beam radius can
be comparable to the perpendicular wavelength. Furthermore, an axially-continuous, density-

modulated beam with modulation period /, has been considered in Refs. [22-24], and therefore a
monochromatic wave excitation with frequency w=v, /I, was obtained. Note that a finite-length

ion beam pulse with a bell-shaped (not modulated) axial density profile used in intense beam
transport applications can excite a broad frequency spectrum with a characteristic frequency

@ ~v, /I, and bandwidth 8@ ~ @. Therefore, in the present analysis we consider excitation of the

electromagnetic whistler branch by a finite-length ion beam pulse propagating through a
background plasma along a solenidal magnetic field, taking into account the effects of the
longitudinal and transverse beam structures.

In the present paper we demonstrate that the total electromagnetic field excited by the ion
beam pulse can be conveniently represented as the sum of two components: a local field
component, corresponding to the local polarization of the background plasma, and rapidly
decaying to zero outside the beam pulse; and a wave field component that can extend far outside

the beam. It is then shown that in the regime where @, >>2f,®,, the local-field component has

the dominant influence on the transverse beam dynamics. Moreover, in this limit, a positive charge
of the ion beam pulse becomes over-compensated by the plasma electrons, resulting in an

enhanced transverse focusing of the beam ions. Note that for the case where w, <250,



considered in Refs. [14, 15], the beam charge is under-neutralized, and the radial electric field has
a defocusing effect. Furthermore, it is shown that the local plasma response is changing from

paramagnetic for the o, <2f,0,, case [14, 15], to diamagnetic for the w, >2f,w,, case. The

e

threshold value of the magnetic field @7, =2,@,,, which separates these qualitatively different

regimes of ion beam interaction with the background plasma, corresponds to the resonant
excitation of a large-amplitude wave-field component [22].

It is important to point out that the effects of resonant wave excitation can be utilized for
diagnostic purposes. Indeed, placing a pick-up loop outside the beam pulse and varying the

amplitude of the applied magnetic field, a large-amplitude signal will be detected when the applied

magnetic field approaches the threshold value specified by w;, =24,®,, . Therefore, it is expected

that this scheme can be utilized as a passive diagnostic tool to measure the beam velocity or
plasma density.

This paper is organized as follows. The theoretical model and assumptions in the present
analysis are described Sec. II. In Sec. III we consider the regime of resonant wave excitation,
present the asymptotic time-dependent solution in the linear approximation, and estimate the
saturation amplitude due to the nonlinear response of the plasma electrons. The analytical solutions
for the electromagnetic field are compared to the results of numerical particle-in-cell simulations in
Sec. IV. Finally, in Sec. V a detailed analysis of the local field excitations, including the effects of

enhanced beam self-focusing, is presented.

II. THEORETICAL MODEL

In this section we calculate the electromagnetic field excitation generated by an ion beam
pulse propagating through a cold background plasma with a constant velocity, v, along a uniform

magnetic field B, = B,z . The beam carries a current of j, =Z,en, (z—v,t,x), where Z, is the

beam ion charge state, -e is the electron charge, n, is the beam number density, and x and z are the
transverse and longitudinal coordinates, respectively. For simplicity in the analytical studies, we
consider here 2D slab (x,z) geometry, and the results of numerical simulations in cylindrical (7,z)
geometry are presented in Sec. IV. Provided the beam density is small compared to the plasma

density (np<<n,) , we assume a linear (small-signal) plasma response and obtain the following



equation for the Fourier transforms of the perturbed electromagnetic field components
E-= J‘dkda)Ewyk exp(—iowt +ik x+ik.z) and B = J‘a’ka?a)Bw,k exp(—iwt +ik x +ik_z) [25]:

2

o . 4ri ,
sza),k _k(k'Ew,k)__zg .E(u,k = Ja),k * (1)
c c
Here, & is the dielectric tensor describing linear response of the cold plasma electrons® with
£,=¢,=1-w, / (a)z—a)fe), £.=1-w, / ', and & =-¢ =iw.0, / [a)(a)z—a)fg)], where

o, :(47re2n » / m, )1/2 is the plasma frequency, @, =eB,,/m,c is the electron cyclotron frequency,

ce ext
and the plasma ion response is neglected provided k[, <</m./m, *°. Here, m, and m; are the

electron mass and ion mass, respectively. Finally, we neglected perturbations in the ion beam
motion, assuming that the time duration of beam-plasma interaction is smaller than the
characteristic time for the ion beam response [26]. The space-time Fourier transform of the beam

current is specified by ox =Zen (k. k)0 (0—kv), where

n = jdgdxn,, (&, x)exp (—ik x—ik.E).
It is straightforward to show for this model of the beam current that Eq. (1) yields a steady-

state solution, in which all quantities depend on z and ¢ solely through the combination & =z—v,z.

In what follows, we assume that the beam pulse is sufficiently long, with <</, and

@ ~v,[l, << ®,, . Note that the latter condition implies that electrostatic electron plasma wave

16-17
d

excitations are significantly suppresse . Finally, in this section, for simplicity we assume that

@, <<, ,

and a general analysis for the case of an arbitrary ratio of @, /@, can be found in
Appendix A. For present purposes, it is particularly important to analyze the x-component of the
electric field perturbations, Ey, and the y-component of the magnetic field perturbations, B,, which
determine the transverse dynamics of the beam particles. After some straightforward algebra we

obtain the following Fourier transforms of the transverse electromagnetic field components

Loy _ y cZk ke, kKvins(w-kv,) 2
mea)pec npa)pe (Cl);e +Czk2 )2 a)2 _a)vzvh (kx’kz)
eBEX,k . ﬂbewpeCkx zzvlfnké‘(w —k.v,) 3)
=— ,
m,o,.c n, (a)f,e + czkz) o’ -, (k. k.)



where use has been made of Faraday’s equation, (w/c)B,, =kxE, to obtain the perturbed

magnetic field component. Here, B, =v,/c, k* =k, +k’, and
W k*k:

2 (k k)= — e e
a)wh( X ) (k2-|-a)!2)e/cz)2

4

is the dispersion relation for the electron whistler branch. The electromagnetic field perturbations
E, and B,, can now be obtained by applying inverse space-time Fourier transforms to Egs. (2) and

(3). Integration over the frequency w readily gives

By _ . cZk ko, kivin, exp(—ik,vt) 5)
mewpec npwpe (601276 +C2k2 )2 kzzv2 _wvzvh (kx’kz) ’
eB! . BZ,w,ck.  klvin, exp(—ik.vt) ©)
=—i :
m,m,,c n, (a)f,e +c2k2) kW -, (k k)

It is evident that the onset of wave-field generation by the beam pulse corresponds to existence of

real solutions to
a)vzvh(kx’kz):kzzvlf' (7)
Note that the condition in Eq. (7) is equivalent to the resonance condition for Cherenkov radiation,

namely V"' =v,, where V'*" is the z-component of the whistler wave phase velocity.

(a) Properties of the excited whistler waves

It is straightforward to show that real solutions to Eq. (7) exist, provided
a:a)ce/zﬂba)pe >1’ (8)

as illustrated in Fig. 1(a). For this case, the solutions k* =k’

em,qs

correspond to the long-wavelength
electromagnetic part of the whistler branch, k=%, <w, / ¢, and the short-wavelength quasi-
electrostatic part, k=k, >, /c [Fig. 1(a)]. In the limit where a>>1 the solutions are

approximately given by

N 2am, ~ P ©)
T T " 2ace
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Fig. 1. Plots of solutions to Eq. (7) corresponding to the wave vectors of the excited whistler wave-field. (a)
The absolute value of the normalized z-component of the whistler wave phase velocity (solid curve) is

intersected by different values of the normalized beam velocity £, (dashed lines). (b) The circles on the plane

(ky k) illustrate the solutions to Eq. (7). For the case of a long beam pulse with /, >> k', the wave vectors

qs,w?
primarily excited are illustrated by the short vertical bold lines. Red and blue colors illustrate positive and

negative signs, respectively, of the x-component of the group velocity for the excited waves.

Note that for a long beam pulse with k.' ~/, >>k_'  the transverse wave vectors of the excited

gs,em

wave field are approximately given by k ~ *k [see Fig. 1(b)].

gs,em

The directions of the x-component of the group velocity V., for the excited wave field are
illustrated in Fig. 1(b). Note that the quasi-electrostatic and the long-wavelength electromagnetic
whistler waves with the same signs of phase velocity have opposite signs of group velocity, V..
Furthermore, it can be shown that the z-component of the group velocity for the short-wavelength
quasi-electrostatic wave field is smaller than the beam velocity. In contrast, the long-wavelength
electromagnetic wave field propagates in the z-direction faster than the beam. Therefore, the long-
wavelength electromagnetic perturbations excited by the beam tail can propagate along the beam
and influence the dynamics of the beam head. A schematic illustration of the whistler wave

excitations is shown in Fig. 2.
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Fig. 2. Schematic illustration of the whistler waves excited by the ion beam pulse. In the beam frame of
reference, the long-wavelength electromagnetic wave-field propagates ahead of the beam pulse, and the

short-wavelength quasi-electrostatic wave-field propagates toward the beam tail.

(b) Wave-field and local-field components of the excited electromagnetic perturbations

Wave-field excitations for the case where « >1 are associated with the poles in Egs. (5)-

(6), which appear in the real space of the wave vector components (ky,k.). Note, for the case of a

long beam pulse, k.' ~/, >> k' that the pole locations on the real k,-axis depend weakly on the

gs.,em >
value of kz, k, =+k,, (1+kz2 / 2k2, » ) It is therefore convenient to carry out the inverse Fourier

integration, first along the k.-axis, and then along the k.-axis. To properly account for the pole
contributions, the integration over k,-space should be carried out along the Landau contour, C;, as
illustrated in Fig 3. Note that integration along the contour C; shows that sufficiently far outside
the beam only wave fields with a positive (negative) x-component of group velocity propagate in

the region x>0 (x<0).



Ty €, Ak (d)

Fig. 3. Integration contours used for evaluation of the integrals in Egs. (4)-(5). Frames (a) and (b) show
Landau contours C;, corresponding to k,<0 and k>0, respectively. Frames (¢) and (d) illustrate contours of
integration equivalent to the ones shown in Frames (a) and (b), respectively. Red and blue colors are used

to illustrate the integration contours for x>0 and x<0, respectively.

To demonstrate this fact, as an illustrative example, we consider the simple case where the
spectrum of the beam density is an analytical function in the complex k,-plane, which satisfies

n, exp(—|k.x|) >0 for large values of |k,. Considering x>0, and closing the Landau contour

through a semi-circle of an infinitely large radius lying in the upper-plane [Figs. 3(a) and 3(b)], we
readily obtain that the wave field excitations correspond to contributions from the poles at k,=—k.,
and k,=k, for k.<0, and at k,=k.,, and k,=-k, for £>0. Note that the group velocity of these waves
is indeed directed away from the beam, i.e., Vg, >0 [see. Fig. 1(b)]. Finally, it should be pointed out
that the integration contours C; are different for the cases where >0 and £.<0. Therefore, even for
a symmetric longitudinal beam density profile, the electromagnetic field perturbations are not, in
general, symmetric around the beam center, implying oblique wave propagation.

For present purposes, it is convenient to represent the integration along the contour C;, for

x>0 (x<0) as an integral along a slightly shifted upward (downward) contour C; (C.) lying below



(above) the poles of ny, plus (minus) the residues of the relevant on-axis poles [Figs. 3(c) and
3(d)]. For a beam with a smooth radial profile it can be shown that the contribution from the on-

axis poles corresponds to the wave-field components of the electromagnetic field perturbation

(E”,B W) extending far outside the beam, and the integral along the path C. corresponds to the
loc loc : - .
local-field components (£,“,B,) that rapidly decays to zero outside the beam. Assuming

k. <<k for a sufficiently long beam pulse, we obtain the following approximate expressions

em,qs
for the wave-field components of the electromagnetic field perturbation for x>0,

eB) _ 2m0,B,Z,

mw, c B cn, (ki, —kfm)(bem +bqs)’ (10)
eE! 2nZ,0
m,@,,c B cn,m,, (qus —kjm)(eem +€qs)- (i
Here,
by on = (K2, + @, [ jdk (KooK, ) o0S[ K. EF K, (144222, )x], (12)
€ps.om __k;edekznk Ky onrk. )cos[ k.EFk,,,, (1442 2K, ) x ], (13)

are the electric and magnetic components corresponding to the quasi-electrostatic (with subscript

gs”) and the long-wavelength electromagnetic (with subscript “em”) waves, respectively, and

& =z—v,t . Note that the correction term, dp = (k / 2K 1 45 )x , which we only retained in the phase

of the wave-field component, yields a curvature in the phase fronts, and a corresponding decrease

in the wave-field amplitude for x >/; y Kemqs - The local fields are given for x>0 by

qs

eB) 7 y . 0, BZ,k, (k2+a) /c )

mae L e k) 1
EIOC _ ik, & zkx Z kj cze

m,o, c ZI dk.e idk ¢ cnpa)Pe (kf —k:m)(ki —qus) . (13)

10
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Fig. 4. Plots of the steady-state amplitude of the transverse magnetic field perturbations B, The beam-
plasma parameters correspond to Z,=1, [,=10c/w,., $=0.33, and np=2.4-1011 cm™. The applied magnetic
field, B.,~=1600 G, corresponds to a=w../(2fw,.)=1.54. The frames show (a) primarily excitation of long-
wavelength electromagnetic waves by a wide-aperture ion beam with 7,=2.5¢/w,.; and (b) primarily
excitation of short-wavelength quasi-electrostatic waves by a thin beam with r,=0.5¢/w,,. The information
used in obtaining the plots is obtained from Eqgs. (A1)-(A7). The normalization factor in Frames (a) and (b)
is given by B~4nnyZyefyr,. The arrows schematically illustrate the direction of the wave packet group
velocity. Dashed lines correspond to the contour of constant beam density corresponding to the effective

beam radius 7.

It should be noted that for the case where the beam density profile is specified by
n, (x,z—v,t)=n_(x)n, (z-vt), the integration over the k.-space can be carried out independently
from the k,-space integration. Therefore, the axial dependence of the local fields is determined
solely by the beam density axial profile, that is (El"c,Bl"") =n,(z=v,t)®, ,(x). In contrast, it is
readily seen from Egs. (10)-(13) that the wave field propagates obliquely to the beam. This implies
a coupling between the transverse and longitudinal dynamics of the system, and therefore limits

the validity of the slice approximation.

11



Features of the steady-state whistler wave excitation are shown in Fig. 4 for the following

illustrative parameters: n, =n,, exp[ / r, —(z—vt) /Z,f], [,=10c/w,. (beam pulse duration

7=1y/vy=30.3/wype), v4=0.33c, np=0.05n,, n,=2.4-10'"" cm™ and B,,~1600 G. It is readily seen for a
wide-aperture beam, r,=2.5¢/wp., that the long-wavelength electromagnetic part of the whistler
branch is primarily excited [Fig. 4 (a)], and the amplitude of the quasi-electrostatic wave field is
exponentially small [see Eq. (12)]. In contrast, for the case of a thinner beam, r,=0.5¢/wp., the

short-wavelength quasi-electrostatic waves are primarily represented in the excited spectrum [Fig.

4(b)] due to the large excitation factor, (k2 + a) / c ) in front of the integral in Eq. (12). Note
that for the parameters in this illustrative example, @, ~ ®,,, and therefore to obtain the plots in

Fig.4, we used Eqgs. (A1)-(A7), which include @, / ®,, correction terms.

(c) Time evolution of the wave-field perturbations

It should be noted that the denominators in Egs. (10)-(11) can be expressed as
k. -k, =4ena —la) e (16)
and it readily follows that there is strong resonant wave excitation for the case where the poles are
merging, corresponding to a = w,, / 2,Ba)pe =1 and kqs =k, = @, / ¢ [see Fig. 1(a)]. Indeed, it can
be shown in the limit & =1 that the group velocity of an excited wave packet becomes equal to the

beam velocity, i.e., V,, =0, V,_ =v,. That is the wave packet is moving together with the beam

pulse, and can therefore be amplified to very large amplitude (during a very long time interval),
assuming a linear plasma response. The wave-field intensity, however, will be saturated either by
nonlinear processes or due to dissipation (collisions). Note that the local fields specified by Egs.
(14)-(15) do not have singularities at a=1.

For the case where o > 1, the wave-field amplitude reaches a finite quasi-steady-state limit

with a characteristic time scale of 7, ~ mm{rb [V s, /

Ve — Vb|} . This time interval is required for an
initial transient wave packet to propagate sufficiently outside the beam pulse. For the excited

wave vectors specified by Eq. (7), it can be shown that V, / ( f vb) k. /k, . Therefore, for a

sufficiently long beam pulse with [, >> k!

qs.,em 2

the wave perturbations propagates primarily in the

12



transverse direction, and leaves the beam in the time period 7, ~ 7, /V,, . For the case where & >1

and 7, ~c/w,, ,

making use of Egs. (4) and (7), we obtain 7, ~7,/V, ~1,/v,. That is, the time
scale for achieving a quasi-steady-state is of order the beam pulse duration, and is therefore much
longer than the plasma period, i.e.,

r,~1L,/v, > a, (17)
Note that this result is significantly different from the case B..~0, where the characteristic time to

reach a quasi-steady-state is of order of the plasma period.
(d) Influence of the excited wave field on beam charge neutralization and current neutralization

It is of particular interest for neutralized beam transport applications to estimate the degrees
of beam charge neutralization and current neutralization associated with the excited wave field.
Here, we consider the case where « >1, and the limit where & >>1 and the analysis of the local-

field component is addressed in Sec. V. It is convenient to introduce E,=4xn, Z,er, and
B, =47rn,,Z,ep,r, that represent, respectively, the characteristic transverse self-electric field and
self-magnetic field generated by an ion beam propagating in vacuum. Here, ny9 and r, are the
characteristic values of the beam density and radius. The degrees of beam charge neutralization
and current neutralization can now be effectively measured by E,/E, and B,/B,. Considering, for
simplicity, a Gaussian beam density profile with n,=(r/, /47)n,, exp[—rbzkf /4—lb2kz2 /4], it
follows from Egs. (10)-(13) that the degrees of beam charge neutralization and current
neutralization associated with the wave field excitations is given by

KN\/;max{czk;/a); exp(—rgzk;/4),exp(—rbzkjm/4)} (18)

B, daa? —1 ,

o AT A S A N G A AT AL
@

. (19)
EO pe 46(\/6!2—1

It readily follows from Egs. (18)-(19), for the case where r,k,, /2<1 and « >1, that the beam

current is not neutralized, i.e., ByW /BO ~1. The beam charge is, however, well-neutralized, i.e.,

E" / E, <<1, provided o, << @, [this is due to the factor w’, / a);e in Eq. (19)]. For the case

13



where @, ~®,,, the degree of charge neutralization decreases, giving E" |E, ~1, (see Appendix

A), which is consistent with the analysis in Ref. [15].

III. RESONANT WAVE EXCITATION: THE ASYMPTOTIC TIME-DEPENDENT
SOLUTION

In the previous section, it was demonstrated for the critical case where o =1, that very-
large-amplitude wave-field excitations are predicted by the linear theory for a quasi-steady-state
solution. This effect of large-amplitude wave-field excitations in the limit of merging poles

corresponding to a = w,, / 2pw,, =1 and k =k, =0, / ¢ (so-called double pole case) has been
previously reported in Refs. [22-23] for the case of an axially-continuous and thin (7,k, <<1)

electron beam with a periodically modulated axial density profile. In those calculations, weak
dissipation (due to collisions) [22], or nonlinear interaction between the beam electrons and the
excited whistler waves [23] were assumed in order to estimate the saturated amplitude of the
electromagnetic field perturbations. In the present analysis we obtain the asymptotic time-
dependent solution for the wave amplitude in the linear approximation. Furthermore, we discuss a
possible mechanism for saturation of the wave field intensity associated with the nonlinear
response of the background plasma electrons, which can drive the system off resonance. Provided
the beam ions are sufficiently massive, the saturation determined by this mechanism can occur
before the nonlinear interaction between the beam ions and the excited whistler waves becomes
important.

To describe the time-evolution of the electromagnetic field perturbation excited by the ion
beam pulse, we solve here an initial-value problem, making use of Laplace transforms with respect
to time. Note that the temporal Fourier transform used in Sec. II yields only the steady-state
solution. In this section, we assume that the initial electromagnetic field is zero everywhere, and

the beam current (source) is instantaneously turned on at =0, i.e., j, =Z,en, (z—v,t,x)H(?),

where H(¢) is the Heaviside step function defined by H(t)=0 for t<0, and H(t)=1 for t>0. Similar to
Eq. (3), we obtain that the space (Fourier) - time (Laplace) transform of the perturbed transverse

magnetic field is given by
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eBl, 1 087Kk, n,

= . 20
mao,c  27n, (a)ﬁe + czkz) [a)2 —a?, (k k. )](a)— k.v,) (20)
The inverse Laplace time transform performed in the complex w-plane readily gives
eB] .0, S Z k2 kon [ exp (—ik_v,t) exp(—iw,,t) L exp (iw, 1) o)
mewpec np (0);276 + C2k2 ) kzzv}f - a)vzvh 2wwh (a)wh - kzvh ) 2a)wh (a)wh + kzvb ) '

Note that the first term inside the brackets in Eq. (21) corresponds to the steady-state solution
[compare with Eq. (6)], in which all quantities depend on ¢ and z exclusively through the

combination &=z-wt. The other two terms describe the time evolution of the transient

excitations. Assuming a sufficiently long beam pulse, k.' ~1, >>k_' ., for the double-pole case

gs.,em
corresponding to & = @, /2,0, =1, Eq. (21) takes the form
eB! » o, BycZ ik n, _exp(—iw,,t)—exp(=ikv,t) N exp(im,,t)—exp(—ik.v,t) 22)
mea)pec 2a)whkzvbnp (kx _a)pe/C)z (kx +a)pe/0)2 .

The right-hand side of Eq. (22) has two critical points on the real k,-axis corresponding to

k,=tw®, [c. However, for the case where a=1, the dispersion relation yields
o, (i @, / c,kz) =+k_v,. Furthermore, the x-component of the group velocity is equal to zero at
the critical points, V,, (kx =tw, / c,kz) = 0. Therefore, the time-dependent solution in Eq. (22) is
regular at the critical points, k, =+®,, /c, and the inverse Fourier integration in k-space can be
carried out along the real axis. Note that at large times, ®,,f >>1, the contribution to the integral
comes mainly from the regions near the points of stationary phase, where dw,,/0k, =V, =0,

which coincide with the critical points £, =t®,, / ¢ . The asymptotic time-dependant solution is

then given by
eB’ o> BZe™ " (o ® “ exp|isgn(k. )’ Ak’ t/2 | -1
k, —_ peﬁbzb nk( pe ,kszin(inJ.dAkx p|: g ( z) 2Wh x / :' : (23)
m,m,c c’n, c c ), Ak;

where B; = J‘dka,f e, o, = ‘[aza)w,, Jok? ]k o] = ¢’ k.| B, /@, , and it has been assumed that

n, (a)pe/c,kz): n (- a)pe/c,kz). Noting that de [exp(ir ixz)— 1]/x2 =27z (xi—1), we obtain
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eB WNrw vz ®
r =i pe’h T sin[ e xj N.(2), (24)
C

mea)pec np

where
N, =]°de£ nk(ﬁ,kzj[cos(kzéh sin(k.<)], (25)
0 C

and a symmetric beam profile with n, (@, /c.k.)=n(®, /c,—k.) has also been assumed.
Equations (24)-(25) describe the asymptotic evolution of the wave field for the double pole case

corresponding to a =, / 2pw,, =1. 1t is readily seen from Eq. (24) that at sufficiently large

times, @/,¢/r; >> 1, the amplitude of the magnetic field is given by

B, ~ mzbe”bﬂbrb J 27)
provided the beam radius is of the order of or smaller than the electron skin depth.

As the amplitude of the resonantly-excited electromagnetic field perturbation increases,
nonlinear processes can provide saturation of the energy transfer from the beam to the wave field.
Here, we consider a plausible mechanism to describe saturation of the wave field intensity, in
which the enhanced electromagnetic field perturbation generated by the ion beam pulse modifies
properties of the whistler waves, and drives the system off resonance. Indeed, as the longitudinal

component of the magnetic field perturbation B, increases, the resonance condition becomes less
accurate, a,, =@\ /2,0, >1, where )" =e(B,+B,)/m. Recalling that the form of the
resonance denominator is given by 1/ (0{\/ az—l), the normalized magnitude of the perturbed

longitudinal ~ magnetic  field Aa=(eB, /mec)/(2ﬂba)pe) can be estimated by

Aa~Z, (nb/np )(rba)pe/c)[(l +Aa’ ) —1]71/2 provided the beam radius is of the order of or smaller

than the electron skin depth [see Eq. (B5)]. It now follows that the wave-field intensity saturates at

the approximate level
Aa~sz/3(nb/np)z/S(rba)pe/c)z/}. (28)
For the case of low beam density, n, <<n,, this amplitude of the electromagnetic field

perturbation is significantly higher compared to the case of non-resonant excitation, o > 1, where

the normalized steady-state amplitude is proportional to n, / n,. Finally, we emphasize that
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although the mechanism considered for the wave-field intensity saturation seems plausible, further
detailed analytical and numerical studies are required to validate it.

The resonant excitation of whistler waves has been observed in numerical particle-in-cell
simulations performed using the two-dimensional slab (x,z) version of the LSP code?’ taking into

account electromagnetic effects. As an illustrative example, we consider a Gaussian ion beam

pulse, n, =0.05n, exp[—r2 [r=(z=v)/ lﬂ, with effective beam radius 7,=0.92¢/w,., and beam

pulse half-length, /,=9.2¢/w,. (beam pulse duration 7,=[,/v;=27.8/w,e), propagating with velocity

vp=0.33¢ through a background plasma with density, np=2.4-10]l cm”.

In the numerical
simulations, the ion beam is injected through the lower boundary of the simulation domain into an
unperturbed magnetized plasma, and it propagates in the z-direction exciting electromagnetic field
perturbations. Figure 5 shows the results of the numerical simulations for the time-evolution of the
maximum value of the perturbed transverse magnetic field B,. Note that for the parameters in this
illustrative example, w..~w,. and ;=0.33, and therefore a generalized analysis for arbitrary value

of w./wp. should be carried out in order to estimate corrections to the resonance condition. The

analysis shows (see Appendix A) that the resonant excitation of the wave field should occur at

a=aw, (1 - B} )/(Zﬂba)pe) =1 [14]. It is readily seen from Fig. 5 that as

B 1.6
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B, 14 -

e g 00 0 0. o0 =137
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Wpel
Fig. 5. Time evolution of the maximum value of the normalized perturbed transverse magnetic field
plotted for different vales of the applied magnetic field. The beam-plasma parameters correspond to Z,=1,
1,=0.92¢/wpe, 1,=9.2¢/wp., $=0.33, and np=2.4-1011 cm”. The applied magnetic field corresponds to

a =1 (solid curve), @ =1.2 (dashed curve), and & =1.37 (dotted curve).
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the magnitude of the applied uniform longitudinal magnetic field, B.., approaches the critical
value corresponding to & =1, the saturation amplitude of the perturbed magnetic field increases,
as well as the time interval required to achieve a quasi-steady-state. Note that the perturbed
transverse magnetic field shown in Fig. 5 is normalized to the magnetic self-field of an

unneutralized beam, B, =4xn,,Z,ef,r, . It 1s evident, for the quasi-steady-state regime, that the
beam current is unneutralized, B, ~ B, , which is consistent with the analytical analysis performed

in Sec. II.

Finally, it should be noted that the effect of resonant large-amplitude wave field excitations
can be utilized for diagnostics purposes in experiments where an ion beam pulse propagates
through a background plasma along an applied solenoidal magnetic field [3,7-8]. Indeed,
measuring the perturbed azimuthal magnetic field, for instance, in the vicinity of the chamber wall,
it can be expected to obtain the following dependence on the value of the applied magnetic field.

First, at low values of the applied magnetic field, « = @, / 2p,m,, <1, the wave-field component of

the electromagnetic field perturbation is not excited, and the excited signal is exponentially small.

As the magnetic field increases, and the threshold value of @ =@, /2,@,, =1 is reached, a large-

amplitude signal corresponding to resonant wave excitation will be detected. Finally, further

increase in the magnitude of the applied magnetic field, a = w,, / 2p,m,, >1, will lead to a decrease

in the amplitude of the excited signal. Provided the directed beam velocity is known, this
diagnostic can be used, for instance, for passive measurements of the background plasma density.
Indeed, determining the threshold magnitude of the applied magnetic field, B., from the

experimental data, the plasma density can be readily obtained from w,, =@, (B,) / 28,.

IV. COMPARISON OF ANALYTICAL THEORY WITH NUMERICAL SIMULATIONS

In this section we present the results of the numerical simulations performed with the
particle-in-cell (PIC) code LSP and compare it with the analytical solutions described in Sec. II.
Figure 6(a) shows the results obtained with the 2D slab (x,z) version of the code for the amplitude
of the y-component of the perturbed magnetic field, when a quasi-steady-state is reached. The

corresponding analytical solution [Egs. (A1)-(A7)] is shown in Fig. 6(b). The following parameters
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have been used for this illustrative example: n, =0.05n, exp[—r2 / 7 —(z —vbz‘)2 / I} ] , 15770.92¢/wpe,

I5=10r, (beam pulse duration 7,=Iy/v,=27.8/mye), v5=0.33¢, n,=2.4-10"" cm™, and B.,=1600 G . It is
readily seen from Figs. 6(a) and 6(b) that the results of the numerical simulations and analytical
theory are found to be in very good agreement. Indeed, the characteristic amplitude of the
electromagnetic field perturbation, wavelength, angle of the propagation, etc., are quite similar.

In addition, to verify the approximate analytical solution specified by Eqs. (A1)-(A7), we
first solved Eq. (1) for arbitrary values of w/@,, , w/®,, , and @, /@, , and then numerically
calculated the inverse fast Fourier transforms. Note that in the regime where a wave field is
excited, the Fourier transforms of the perturbed electromagnetic fields contain singularities in real
(ky, k.)-space. Therefore, the numerical integration of the fast Fourier transforms (FFT) performed
along the real k.- and k.- axes would diverge. To remove the singularities from the real axis, weak

collisions have been assumed for the plasma electron response. Correspondingly, the components

of the dielectric tensor, &, should be modified according to @ [25]
En =€, :l—a);e(a)+iv)/[a)((a)+iv)2 —a)fe)} & zl—a);e/[a)(aﬁiv)], and
£,=—€, =00, / [a)((a)+ iv) - )} , where v is the effective collision frequency. In the limit

of zero collision frequency, the numerical FFT calculation should yield the analytical solutions
given in Egs. (A1)-(A7). The results obtained in the numerical FFT calculation for the case of
weak dissipation, v=0.005/1,, demonstrate very good agreement with the analytical solution
[compare Fig. 6(b) and Fig 6(c)].

It is of particular interest to compare the results obtained for the case of (x,z) slab geometry
[Figs. 6(a) — 6(c)] to the case of cylindrical (7,z) geometry. The results of the numerical simulation
obtained using the 2D (r,z) cylindrical version of the LSP code for the same system parameters are
shown in Fig. 6(d). Results of the (r,z) LSP simulations demonstrate similar wavelength and
propagation angle for the excited wave field. However, the amplitude of the perturbed
electromagnetic field is smaller. Furthermore, it decays more rapidly outside the beam pulse,
compared to the case of the slab beam pulse [compare Fig. 6(a) and 6(d)]. Note for an infinitely
long beam that the amplitude of an excited electromagnetic field decreases as 1/r for the case of

cylindrical geometry, and does not decrease for the case of 2D slab geometry. This can provide a
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plausible explanation of the difference in the wave-field amplitude observed in cylindrical and slab

geometries.
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Fig. 6. Plots of the steady-state amplitude of the transverse magnetic field perturbation B, The beam-plasma

parameters correspond to Z,=1, 7,=0.92c/w,., [,=10r,, (3,=0.33, and np=2.4'1011 cm™. The applied magnetic

field, B..~=1600 G, corresponds to a=w../(2fyw,.)=1.54. The Frames correspond to: (a) results of numerical

simulations obtained using the (x,z) slab version of the LSP code; (b) the analytical solution given by Egs.

(A1)-(A7); (c) numerical calculation of fast Fourier transforms, assuming weak collisions v=0.005/1,; and (d)

the results of numerical simulations obtained using the (r,z) cylindrical version of the LSP code. The dashed

lines correspond to contours of constant beam density corresponding to the effective beam radius .
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V. SELF-FOCUSING OF AN INTENSE ION BEAM PULSE

In this section, making use of Egs. (10)-(15), we calculate the transverse component of the

Lorentz force, F, =Z,eE —Z,ef,B , acting on the beam particles. In Sec. II it has been shown

that the excited wave field perturbations propagate oblique to the beam with characteristic

longitudinal wave number k_~/,". Therefore, the contribution of the wave-field component to the

total Lorentz force can have opposite signs for the beam head and the beam tail. That is, it
produces a focusing effect in the beam head and a defocusing effect in the beam tail, or vise verse.
In contrast, the longitudinal profile of the local-field amplitude is the same as the longitudinal
beam density profile (see Sec. II). Therefore, the local fields provide a focusing (or defocusing)
effect over the entire length of the ion beam pulse. It is therefore important, in practical
applications involving control over the beam aperture, to identify the parameter regimes where the
local component of the electromagnetic field perturbation has the dominant influence on the beam

transverse dynamics.
(a) Regimes of dominant influence of local fields on the beam transverse dynamics

It has been demonstrated in Sec. II for the critical case where =1, that a large-amplitude

wave field is exited. Here, we consider the case where a>>1(w, >>2p,®),,). Furthermore, we

assume 7, >>k_', or equivalently, 7, >> c/(2aa)pe) in the limit where a>>1. This implies an

qs >
exponentially small level of the short-wavelength, quasi-electrostatic wave excitations for the case

of a smooth radial beam density profile. Making use of Egs. (10)-(13), it is straightforward to show

-1

> that the contribution of the wave-field component of the

for the case where r, >>k

electromagnetic field perturbation to the transverse Lorentz force is given approximately by

2 1—(4a” 1)k ) @?
R = 20(5 - 58" )~ 227, mi/,, (4 # |, : (29)
daNa® -1
where
2 o0
l = a)lz)e L_“dkznk (kemokz)COS [kz§+kemx] : (30)
R ¢ n

p o

21



Recall, for a>>1, that the characteristic wave vector for the excited long-wavelength

electromagnetic wave field is given by £, =@, / 2ac , and therefore the wave field contribution to

the Lorentz force vanishes for a>>1. To obtain the local field contribution, it is convenient to

represent the local fields specified by Egs. (14)-(15) in the following form

k kZ +a)2 C2 7 eikv\_erikch
eﬁij_"cz—imeevZIdk x( a pe/ ) K 5 ! TR ! — | (31)
4aNa? ~ln, k; -k, k. —k,,

3 ik x+ik.E
eE" =~iZ,m,v} [ dk ak.ne {kz ! ! } (32)

I 2 12 2
az_lnp _kqs kx _kem
For the case where

(4

a>>1 and r, >> k! = (33)

2w,

we can neglect by the first terms inside the brackets in Eqgs. (31) and (32), and after some
straightforward algebra we obtain that the local field contribution, which constitutes most of the
transverse Lorentz force, is given by

1,

n, dx

F.~ Z,eE\ — Z,ef,BY =Z;m,v, (34)

The analysis in Appendix A, performed for an arbitrary ratio of o, / @, , shows that for

the case of a nonrelativistic ion beam the Lorentz force is still given by Eq. (34), provided

C

a>>1 and 1,>> k' =(1+a. /0, )1/2 (35)

200,

Note that the transverse component of the Lorentz force [Eq. (34)] is proportional to the gradient
of the beam density. Therefore, for the case of a bell-shaped beam density profile, self-focusing of
the beam occurs. Furthermore, it is interesting to note that an annular beam will not pinch to the
axis provided the beam dynamics is governed by the force in Eq. (34). However, the outer beam
radius will decrease and the inner beam radius will increase, resulting in a decrease in the thickness

of the annulus and an increase in the beam density.

Although the total influence of the magnetic and electric field components, B;V and E”, of

the wave field perturbation results in a destructive interference in estimating the transverse Lorentz

force [see Eq. (29)], it is of particular interest to estimate the separate contribution of the wave
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field component to the Lorentz force, and compare it to the contribution of the local field

component. For illustrative purposes, we consider here a Gaussian beam density profile with
n, =(nl,/47)n, exp[ -7k} /ALK [4]. Making use of Egs. (10)~(13), it is straightforward to

show that the contribution of the wave field component can be estimated by

> r 22
%Y~dm¥~&m%32ﬁﬁﬁm4}“@q, (36)
ac n, 4

provided the conditions in Eq. (33) are satisfied. Similar expressions can be obtained for the local

fields using Egs. (31)-(32), i.e.,

1
eE( ~Z,mV; Lz 2 2\’ (37
nn, max(l,kemrb )
max (1, 0> 1’ /¢
e~z tn M) (38)

azrbnp max(l,kfmrbz)
It readily follows from Egs. (36)-(38), for the case where the beam radius is small compared to the
wavelength of the long-wavelength electromagnetic waves, 1k, <<1, that the local electric field
has the dominant contribution to the transverse component of the Lorentz force. As the beam
radius increases and becomes of order the electromagnetic wave-field wavelength, rk, ~1, the
separate contributions from all components of the perturbed electromagnetic field become of the
same order, i.e., £ ~ E! ~ B, B ~ B B” . With a further increase in the beam radius, r,k,, >>1,

the local magnetic field contribution becomes dominant, and both the quasi-electrostatic and long-
wavelength electromagnetic wave-field components are exited to exponentially small levels for the
case of a smooth beam density profile.

The time evolution of the electromagnetic field perturbation for the case where o >>1 and

k;sl <<r, << k.! , which corresponds to a dominant influence of the local self-electric field, has

been studied using the LSP simulation code. Figure 7 shows a plot of the perturbed transverse self-

electric field at the simulation time #=54 ns. The beam-plasma parameters considered for this
illustrative example correspond to n, =0.13n, exp[—rz/rb2 —(z—vbt)z/lbz} n,=10"cm>, Z,=1,
r5=0.55¢/wpe, 1=T5/®pe, f=0.05, B.=300 G, and a=w../2fpwp.=9.35. The wave structure in front

of the beam pulse corresponds to a transient wave-field perturbations associated with the initial

beam penetration into the plasma through the boundary at z = 0. Note that these transient
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Fig. 7. Plot of the perturbed transverse self-electric field corresponding to #,=54 ns. The system parameters
correspond to Z,=1, r,=0.55¢/w,e, T=75/0pe, $=0.05, B.,~=300 G, and o=w./2fp®,.=9.35. The results
are obtained using the 2D (x,z) version of the LSP code. The dashed curve corresponds to the contour of

constant beam density corresponding to the effective beam radius 7.

perturbations do not interact with the ion beam pulse effectively, because they do not satisfy the
Cherenkov criteria in Eq. (7). Therefore, the energy content in the corresponding wave field is
attributed only to the initial beam penetration into the plasma, and is not related to the beam energy
later in time. As the transient wave-field perturbations leave the beam on the characteristic time
scale te~min{ry/Vex, Ip/|Ve-vs|} (see Sec. 1), the local component of the self-electric field exhibits
the dominant influence on the ion beam transverse dynamics, as evident from Fig. 7. The intensity
of the excited wave field satisfying the condition in Eq. (7) is negligible, which is consistent with

the analytical calculations performed in this section.
(b) Enhanced ion beam self-focusing

In Sec. V (a), it was demonstrated for the case where «=w,/28,0, >>1 and
r, >>c/ (2aa) pe), that the local fields have the dominant influence on the transverse dynamics of

the ion beam particles. In this regime, focusing is provided over the entire length of the beam pulse
and the corresponding self-focusing force acting on the beam ions is specified by Eq. (34). It is of

particular interest to compare this self-focusing force to the self-pinching force acting on the ion
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beam particles for the case where the ion beam pulse propagates through an unmagnetized plasma,
i.e., B.=0. Indeed, even for this simple case the beam charge is typically better neutralized than
the beam current, and the self-pinching force is produced by the net self-magnetic field”. This
self-pinching can be utilized for a variety of applications, including self-pinched ion beam
transportzg, and heavy ion beam focusing30. Note that for the case where B,,~0, the beam current
is almost unneutralized in the limit where the beam radius is small compared to the electron skin

depth, r, << c/ ®,, . Therefore, the self-pinching effect is a maximum in this regime.

For the case where 7 << c/ ®,, , the ratio of the collective self-focusing force in the
presence of an applied magnetic field [Eq. (34)] to the self-pinching force, Fy, in the limit B,,~0
case, can be estimated as F, / F,~ (c/rba)pe )2 >>1 [31]. That is, the self-focusing of an ion beam

pulse propagating through a neutralizing plasma can be significantly enhanced by the application

of a solenoidal magnetic field satisfying & = ,,/2f,®,, >>1. Here, we emphasize again that the
threshold value ¢, =1 typically corresponds to a weak magnetic field (see Introduction). The
condition 7, << c/a)pe can be rewritten in terms of the beam current 1, as [, <<4.25p, (nb/np )kA .

Also, note that for a typical ion beam injector aperture of the order of 1 cm, the beam radius (~ 1

cm) is small compared to the electron skin depth provided the beam and plasma density are in the
range of n, <n, < 2.8-10" / (rb[cm])2 cm™ , which are typical parameters for several beam transport

applications [3,7-8]. Therefore, this self-focusing enhancement can be of considerable practical
importance.

As a practical example, here we consider parameters characteristic of the present
Neutralized Drift Compression Experiment (NDCX-I) [7] and its future upgrade NDCX-II [8],
which are designed to study the energy deposition from the intense ion beam onto a target. The
experiments involve neutralized compression of an intense ion beam pulse with radius 7,~1 cm as
it propagates through a long drift section with length L,~200 cm filled with a background plasma
with density np~1011 cm”. As it exits the drift section, the beam passes through a strong magnetic
lens with magnetic field B~=8 T, and length L,~10cm, which provides additional transverse

focusing. For the currently operating NDCX-I experiment, typical beam parameters correspond to

Bl =0.004, m' =39a.u., Z/ =1. The proposed NDCX-II experiment is aimed at operating at

higher beam energies: B, =0.032, m! =7 a.u., Z =1. The corresponding values of the critical
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magnetic field are given by B’ =130 G and B” =16 G, for NDCX-I and NDCX-II parameters,
respectively. The fringe magnetic field of the strong magnetic lens can penetrate deeply into the
drift section at a magnitude much larger than B, thus providing conditions for enhanced self-

focusing for both NDCX-I and NDCX-II. Moreover, the integrated effect of the beam self-
focusing inside the drift section filled with the background plasma can become comparable to the

focusing effect of the strong magnetic lens. Introducing the dimensionless parameters

5=F,L,/F,L,, where F, ~ m, .7, / 4 1s the magnetic focusing force acting on the beam ions

sTs 0 s

inside the lens, and F, ~m,V,’ [r, is the self-focusing force (n,~n, is assumed), we readily obtain

5" =0.04 and 6" =0.5 for the parameters characteristic of NDCX-I and NDCX-II respectively.
Here, m;, and w., are the ion beam mass and cyclotron frequency, respectively. Therefore, the
plasma-induced collective focusing effect in a several hundred gauss magnetic field can become
comparable to the focusing effect of a strong 8 Tesla final focus solenoid for the design parameters
characteristic of NDCX-II.

It should be noted that Eq. (34), along with the conditions in Eq. (35) have been obtained
previously in Ref. [31]. The analysis in Ref. [31] was performed for the case of cylindrical
geometry and assumed the slice approximation, which describes very well the local fields, and is
of limited validity for the case where a strongly pronounced wave field perturbation is excited [see.

Sec. II]. Note that in this work we have demonstrated the dominant influence of the local fields for
the case where  >>1 and rbkq‘; >> 1, thus validating the assumptions used in the analysis in Ref.
[31].

In addition, in the present work the enhancement of the self-focusing force in the presence

of a weak applied magnetic field has been observed in electromagnetic particle-in-cell simulations

performed using the 2D (x,z) slice version of the LSP code. As an illustrative example, we consider
a Gaussian ion beam pulse, 1, =0.13n, exp[—rz/ r2—(z-vt)’/ lﬂ, with effective beam radius,
r5=0.55c/wp., and beam pulse half-length, /,=1.875c¢/w,. (beam pulse duration t,=75/wpc),
propagating with velocity v,=0.05¢ through a background plasma with density np=1010 cm™. The

results of the numerical simulations shown in Fig. 8 demonstrate the significant (~10 times)

enhancement of the transverse component of the Lorentz force due to an applied magnetic field of
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Fig. 8. Radial dependence of the normalized focusing force at the beam center. The results of the
numerical simulations correspond to B.,=300 G and a=w./2fy0,.=9.35 (green curve), and @.=0
(purple curve). The analytical results in Eq. (33), are shown by the blue curve, the pink curve
demonstrates the analytical predictions obtained by performing integration in Eqs. (A1)-(A7). The beam-
plasma parameters correspond to Z,=1, r,=0.55¢/w,e, T=75/0pe, £=0.05, and np=1010 cm™. The black

curve corresponds to the radial beam density profile.

B..~=300 G. Figure 8 shows the total transverse focusing force (i.e., the sum of the magnetic and
electric component of the Lorentz force) acting on the beam ions in the presence of an applied
magnetic field (green, blue, and pink curves), and for the case where an external magnetic field is
not applied (purple curve). The units of the electric field, V/cm, are chosen for practical
representation of its numerical value. Note that the results of the numerical simulations are found
to be in very good agreement with the approximate analytical solution given by Eq. (34) (blue

curve), and with the more accurate analytical solutions given by Egs. (A1)-(A7) (pink curve).
(c) Properties of a local plasma response

As demonstrated above, the local component of the self-electric field provides the

dominant contribution to the transverse Lorentz force for the case where o =aw,, / 2p,0, >>1 and
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k, <<r, <<k, (or equivalently, c¢/2aw, <<r, <<2ac/w, ). Form Eq. (34) it now readily

follows that
Z,eE, ~ Zim i~ (39)

n, dx

and therefore, for the case of a bell-shaped beam density profile, the transverse electric self-field
produces a focusing effect on the ion beam pulse. This implies that a positive charge of the ion
beam pulse becomes over-compensated by the background plasma electrons®'. In the same
parameter regime, the z-component of the magnetic field perturbation is specified by (see
Appendix B)

B Zp 0,

m,m, c .n,

n,(x,z), (40)

indicating the diamagnetic plasma response.

It is interesting to note that a defocusing self-electric field and a paramagnetic plasma
response were found for the case where o <1 [14-15]. This means that the qualitatively different
local plasma responses for the cases where o <1 and « >1 are separated by the critical case
where o =1, corresponding to resonant excitation of a large-amplitude wave-field perturbation.

The analytical calculation demonstrating the dramatic change of the local plasma response
with an increase of an applied magnetic field has also been verified by the results of 2D (x,z) LSP

simulations (Fig. 9). The parameters chosen for the illustrative example in Fig. 9 correspond to
n, =0.13n, exp[—rz/r,,2 —(z—vbt)z/l,f], 75=0.55¢/Wpe, 1=1.875¢/@pe, v5=0.05¢, and 1n,~10'" cm™.

One can readily see that the paramagnetic plasma response [Fig, 9(b)], and the defocusing effect of
the transverse self-electric field [Fig. 9(a)] for the case where « =0.78, change to a diamagnetic
plasma response [Fig. 9(d)] and a focusing effect of the self-electric field [Fig. 9(¢)] for o =9.35.
Note that the longitudinal oscillations in Fig. 9(a) are an artifact of the numerical code, and a
smooth longitudinal dependence can be obtained by increasing the space-time resolution along
with the number of macro-particles. Figures 9(e) and 9(f) show the approximate analytical
solutions for the transverse component of the electric field [Eq. (26)], and the longitudinal
component of the magnetic field [Eq. (27)], respectively. Finally, note that the magnitude of the

transverse electric field perturbation is significantly increased by an increase in the applied
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Fig. 9. Plots of the transverse self-electric field (left) and longitudinal self-magnetic (right) field of an ion
beam pulse with Z,=1, r,=0.55¢/wpe, 1,=1.875c/w,., and v,=0.05¢ propagating through a background
plasma with np=1010 cm” along a solenoidal magnetic field. Frames (a) and (b) correspond to the results of
2D (x,z) LSP simulations for B.,~=25 G. Frames (c) and (d) correspond to the results of 2D (x,z) LSP
simulations for B,,~=300 G. Frames (e) and (f) correspond to the approximate analytical solutions given by
Eq. (38) and Eq. (39), respectively. Note the significantly different local plasma responses between the
cases where 0=0.78 [Frames (a) and (b)] and ¢=9.35 [Frames (c) and (d)]. Dashed lines correspond to

contours of constant beam density corresponding to the effective beam radius 7y. 29



magnetic field [compare Figs. 9(a) and 9(c)]. This strong transverse electric field provides the

enhanced ion beam focusing, as discussed above.

VI. CONCLUSIONS

In the present paper, the electromagnetic field perturbation excited by a long ion beam
pulse propagating through a neutralizing background plasma along a solenoidal magnetic field was
studied analytically, and by means of numerical simulations using the electromagnetic particle-in-
cell code LSP. It was demonstrated that the total electromagnetic field perturbation excited by an
ion beam pulse with a smooth radial density profile can be conveniently represented as the sum of
a local-field component, rapidly decaying to zero outside the beam pulse, and a wave-field
component that can extend far outside the beam. The wave field is represented by a long-
wavelength electromagnetic component with |k|=k.n<w,./c, and a short-wavelength quasi-
electrostatic component with |kJ|=k,>w,/c. Note that the longitudinal component of the
electromagnetic wave group velocity is greater than the beam velocity. Therefore, the long-
wavelength electromagnetic perturbations excited by the tail of the beam pulse can propagate
along the beam and influence the dynamics of the beam head. The system reaches a quasi-steady-
state when the wave packet of the initial transient excitation propagates sufficiently far outside the
beam. It was found, for a sufficiently long ion beam pulse, that the time-scale for achieving a
quasi-steady-state can be of order the beam pulse duration, and is therefore much longer than the
inverse plasma frequency. This result is significantly different from the case B..~0, where the
characteristic time to reach a steady-state is of the order of the plasma period.

It was also shown that the wave-field excitations propagate obliquely to the beam with a
characteristic wavelength of k~1//,. Therefore, their contributions to the transverse component of
the Lorentz force can have opposite signs for the beam head and the beam tail. In contrast, the
longitudinal profile of the local-field amplitude is the same as the longitudinal beam density
profile. Therefore, the transverse local fields have the same sign over the entire length of the ion
beam pulse. It is therefore important, in practical applications involving control over the beam
aperture, to identify the parameter regimes where the local component of the electromagnetic field
perturbation has the dominant influence on the beam transverse dynamics.

In this paper, it was also demonstrated, in the regime where @, >>2f,0,, and r,k, >>1,

that the local-field component primarily determines the transverse dynamics of the beam particles;
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and the wave fields produce a negligible transverse force. Moreover, a positive charge of the ion
beam pulse becomes over-compensated by the plasma electrons, and the associated strong

transverse-focusing self-electric field has the dominant influence on the beam ions, compared with

the magnetic field, provided kq_sl <<r, <<k, . It was also shown, for the case where the beam

radius is small compared to the electron skin depth, that the self-focusing force is significantly
enhanced compared to the self-focusing force acting of the beam particles in the absence of an
applied magnetic field. In addition, the local diamagnetic plasma response is observed in the

numerical simulations, and is also predicted analytically for @,, >>2f,®,,. Note that these results
differ significantly from the case @, <2f,®,,, where the transverse electric field is defocusing,

and the plasma response is paramagnetic. The qualitatively different local plasma responses are

separated by the critical field case where w;, =2,0,, , corresponding to the resonant excitation of

large-amplitude wave-field perturbations. In the present analysis, the asymptotic time-dependent
solution was obtained for this critical case, and the saturated intensity of the wave-field
perturbations, determined from the nonlinear response of the background plasma electrons, was
estimated. In addition, a plausible application of the resonant wave excitation effect for diagnostic
purposes was discussed.

Finally, we emphasize that the effects of an applied solenoidal magnetic field on

neutralized ion beam transport described in this paper for the case of @, >2f,m, can be of

particular importance for the presently operating Neutralized Drift Compression Experiment
NDCX-I [7] and its future upgrade NDCX-II [8]. The design of the NDCX facilities first involves
the neutralized drift compression of the ion beam pulse, and then additional transverse focusing on
the target plane by a strong (several Tesla) final-focus solenoid. The threshold magnetic field in
the inequality @,, >2p,@,, corresponds to a relatively weak magnetic field of the order of 10 G

(for NDCX-I) and 100 G (for NDCX-II). Therefore, the magnetic fringe fields of the final-focus
solenoid above this value can penetrate deep into the drift section. In particular, these fringe fields
provide conditions for enhanced beam self-focusing, which can have a significant influence on the

transverse beam dynamics for the parameters characteristic of NDCX-II.
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APPENDIX A: ELECTROMAGNETIC FIELD PERTURBATIONS FOR THE CASE OF
ARBITRARY RATIO OF w, / o,

Equations (10)-(15) can be generalized to the case of an arbitrary ratio of @, /a)pe.

Assuming @ ~v,/l, <<w,,,®,, and [, >> r,,k! . after some straightforward algebra one can

pe’ em,qs 2

show that the electromagnetic field perturbations for 0 < x <</’ k

em,gs are given by
eB” 2rw, B, 7
y _ pel”b™b

- 2 72
m,o,c cn, (kqs - kem)

(b, +b,) (A1)

eE! 2nZ,0

- 2 72
m@,c cn,o, (k -k

em

e, +e,). (A2)

)(e,,,

2
bqs,em = i(k;s,em (1+a) / )jj-dk nk qs, em’k )COS(kzéjikqg emx) (A3)
Cpon =E[ K} o /(14 @) @ j dk n, (K, ok, )cos(kEF K, %), (A4)
Bl"c T zk & ik x a)peﬁbzbkx 2 !273 /c2
m,m,c ;[O J:dke " p(k)f—lgjm)(kf—lgjg) kX+1+a) t e, ) (A5)
eE"* 7 . . Z kxa)ce/(l+ w, / )
> — i ar ™ [ dic e . A6
m,,c l'[ - I € cn,w,, (kf —kezm)(kf —qus) (48)
Here, k,, s are the solutions to the generalized dispersion relation

2 4 6
c4kj[1+w’;eJ+{2w;’e (124 } e+ 0. (A7)

a)ce a)ce ﬂb a)ce

Equations (A1)-(A7) describe the electromagnetic field perturbation excited by an ion beam pulse

for an arbitrary ratio of @, / and furthermore for an arbitrary beam velocity, including the

pe
case of a relativistic ion beam. The dynamics of the background plasma electrons, however, are
assumed to be nonrelativistic, which requires that the beam density be much smaller the plasma

density (n,<<n,).
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The onset of wave generation, corresponding to the existence of real solutions to Eq. (A7),

is now determined by the condition a=w, (1— B ) / 2B,w, >1. In the limit where a>>1 and
B, <<1, the solutions to Eq. (A7) can be approximated by l;qs =2awm, / [c(1+a)fe / a);e )I/ZJ and

lgem =, / (2ac), where a=aw,, / 2p,m,, . Making use of Egs. (Al)-(A6), we can then reproduce

the main results obtained earlier in the present paper. Repeating the analysis performed in Sec. III,
after some straightforward algebra, we find that the asymptotic time-dependent solution for the

critical case corresponding to & =1 is given by

eB” Al ,Bbzlga) Z, sin(lgcx)Nz(z)

— = (AB)
m,e,c n, (k2 + a2, /) \/\an;’h Jok?| .
N, = Tdkz Jen(k..k_ Jeos(k.&)+ sin(k.&)]. (A9)
0

~

where the critical value of the wave vector, k., corresponding to the solution of Eq. (A7) for

c?

a =1, is given by

148 & I v
k.= 5 | (A10)
-4 ¢ [1+a)ce/a)pe:|
and the longitudinal component of the wave phase velocity is defined by
172 — a)wh — kxa)c (Al 1)

"ok [Kral [F][R (4@ @) vl ]
Similarly, repeating the analysis performed in Sec. V, after some straightforward algebra

one can demonstrate that for a non-relativistic beam, £, << 1, with rbl: s >>1, the total wave-field

contribution to the transverse component of the Lorentz force vanishes, and the transverse force
produced by the local field perturbation is still determined by Eq. (22), i.e.,

Fo=Zimp; - (A12)

n, dx
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APPENDIX B: AXIAL MAGNETIC FIELD PERTURBATION AND LOCAL
DIAMAGNETIC PLASMA RESPONSE FOR a =0, /2,0, >>1

Making use of Eq. (1), after some straightforward algebra we find that the longitudinal

component of the magnetic field perturbation is given by B.=B" + B, where the local

z 3

component, B, and the wave component, B , are specified for 0 < x << lbzlg by

em,qs

eBZW _ 2rZ,0,0,, w s
ma,c n, (k. -é:i)(bz "), .
bzem,qs - I:lgem,qs /(1 + a)f/a)f, )]Tdkznk (lgem’qé" kz )Sil’l(kzZ * lgem’qsx) ’ (Bz)
0
€Binc _ T ik, & ik x Zbkj Oee@pe / (1+ wcze/ a);e)
e e jm dk.e _ldkxe M n () -) (B3)

It follows for the case of a nonrelativistic beam, f,<<lI, propagating through a background plasma

with @ =, /2,®, >>1, that the local z-component of the magnetic field perturbation is much

greater than the wave-field z-component, and is given approximately by

loc 2
eB ZOL Zb ﬁ b a)pe

m,m,c N,

n, (x,z), (B4)

provided the beam radius 7,  satisfies kq’s1 <«<r, <<k

em

or  equivalently,

c(1+a)f | )/(2aa)pe)<< r, <<2ac/w,, in the limit a >>1. Equation (B4) demonstrates the

diamagnetic plasma response, in accordance with the results obtained in the numerical simulations.

For the critical case where a=a, /Zﬂba)pe ~1, assuming a nonrelativistic ion beam,
B, <<1, after some straightforward algebra it follows from Eqgs. (B1)-(B2) that
Aa =(eB,/m,c) / (28,@,,) can be estimated by
-1/2
Aa~Z,(n,/n,)(re,/c)(1+Aa®)-1] ", (BS)

provided the beam radius is of the order of or smaller than the electron skin depth. Note that in

obtaining Eq. (BS), we have used the fact that @, << ®,,, which is required by the resonance

condition, @ = @, /23,@,, =1, for the case of a nonrelativistic ion beam pulse.

34



AKNOWLEDGEMENTS

This research was supported by the U.S. Department of Energy.

"'P. Chen, Phys. Rev. Lett. 54, 693 (1985).

2 C. Joshi, Phys. Plasmas 14, 055501 (2007).

’P. K. Roy, S. S. Yu, E. Henestroza, A. Anders, F. M. Bieniosek, J. Coleman, S. Eylon, W. G. Greenway,
M. Leitner, B. G. Logan, W. L. Waldron, D. R. Welch, C. Thoma, A. B. Setkow, E. P. Gilson, P. C.
Efthimion, and R. C. Davidson, Phys. Rev. Lett. 95, 234801 (2005).

*S.S. Yu, R.P. Abbott, R.O. Bangerter, J.J. Barnard, R.J. Briggs, D. Callahan, C.M. Celata, R. Davidson,
C.S. Debonnel, S. Eylon, A. Faltens, A. Friedman, D.P. Grote, P. Heitzenroeder, E. Henestroza, 1.
Kaganovich, J.W. Kwan, J.F. Latkowski, E.P. Lee, B.G. Logan, P.F. Peterson, D. Rose, P.K. Roy, G.-L.
Sabbi, P.A. Seidl, W.M. Sharp and D.R. Welch, Nucl. Instr. And Meth. A 544, 294 (2005).

> M. V. Medvedev, M. Fiore, R. A. Fonseca, L. O. Silva, and W. B. Mori, Astrophys. J. Lett. 618, L75

(2005).

% A. Gruzinov, Astrophys. J. Lett. 563, L15 (2001).

'P.A. Seidl, A. Anders, F.M. Bieniosek, J.J. Barnard, J. Calanog, A.X. Chen, R.H. Cohen, J.E. Coleman, M.
Dorf, E.P. Gilson, D.P. Grote, J.Y. Jung, M. Leitner, S.M. Lidia, B.G. Logan, P. Ni, P.K. Roy, K. Van den
Bogert, W.L. Waldron, and D.R. Welch, Nucl. Instr. and Meth. A 606, 75 (2009).

¥ A. Friedman, J.J. Barnard, R.J. Briggs, R.C. Davidson, M. Dorf, D.P. Grote, E. Henestroza, E.P. Lee,
M.A. Leitner, B.G. Logan, A.B. Sefkow, W.M. Sharp, W.L. Waldron, D.R. Welch, S.S. Yu, Nucl. Instr.
and Meth. A 606, 6 (2009).

’ R. Lee and R. N. Sudan, Phys. Fluids 14, 1213 (1971).

K. R. Chu and N. Rostoker, Phys. Fluids 16, 1472 (1973).

''S. E. Rosinskii and V. G. Rukhlin, Sov. Phys. JETP 37, 436 (1973).

"2 H. L. Berk and L. D. Pearlstein, Phys. Fluids 19, 1831 (1976).

3 J.C. Johnson, N. D’Angelo, and R. L. Merlino, IEEE Transactions on Plasma Science 16, 590 (1988).

“1.D. Kaganovich, E. A. Startsev, A. B. Setkow and R. C. Davidson, Phys. Rev. Lett. 99, 235002 (2007).

51.D. Kaganovich, E. A. Startsev, A. B. Sefkow and R. C. Davidson, Phys. Plasmas 15, 103108 (2008).

1. D. Kaganovich, G. Shvets, E. Startsev, and R. C. Davidson, Phys. Plasmas 8, 4180 (2001).

'71. D. Kaganovich, E. Startsev, and R. C. Davidson, Phys. Plasmas 11, 3546 (2004).

8 B. V. Oliver, D. D. Ryutov, and R. N. Sudan, Phys. Plasmas 1, 3383 (1994).

1% C. Krafft and M. Starodubtsev, Planetary and Space Science 50, 129 (2002), and references therein.

2% J. Lavergnat and R. Pellat, J. Geophys. Res. 84, 12 (1979).

35



21 C. Krafft, P. Thévenet, G. Matthieussent, B. Lundin, G. Belmont, B. Lembeége, J. Solomon, J. Lavergnat,
and T. Lehner, Phys. Rev. Lett. 72, 649 (1994).

2 A. Volokitin, C. Krafft, and G. Matthieussent, Phys. Plasmas 2, 4297 (1995).

3 A. Volokitin, C. Krafft, and G. Matthieussent, Phys. Plasmas 4, 4126 (1997).

* C. Krafft and A. Volokitin, Phys. of Plasmas 5, 4243 (1998).

» A. L Ahiezer, I. A. Ahiezer, R. V. Polovin, A. G. Sitenko, and K. N. Stepanov, Plasma Electrodynamics
(Nauka, Moscow, 1974).

* E.A. Startsev, R. C. Davidson and M. Dorf, Phys. Plasmas 15, 062107 (2008).

T LSP is a software product developed by ATK Mission Research, Albuquerque, NM 87110.

21, D. Kaganovich, A. B. Sefkow, E.A. Startsev, R. C. Davidson and D. R. Welch, Nucl. Instr. and Meth.
A 577,93 (2007).

¥ P. F. Ottinger, Phys. Plasmas 7, 346 (2000).

0 K. Hahn and E. Lee, Fusion Engineering and Design 32-33, 417 (1996).

3''M. Dorf, L. Kaganovich, E. Startsev and R. Davidson, Phys. Rev. Lett. 103, 075003 (2009).

36



	M_Richman_extender.pdf
	Background
	Extender
	Parallel Algorithms

	Speed Optimization
	Efficient Parallelization
	Optimizing Representation of Plasma Surface
	Results


	Automation
	Fortran 90 module
	Generalized PBS job scripts

	Conclusion
	PBS batch job template


	report number: 4487
	Title: Whistler Wave Excitation and Effects of Self-Focusing on Ion Beam Propagation through a Background Plasma along a Solenoidal Magnetic Field 
	Date: February, 2010
	authors: Mikhail A. Dorf, Igor D. Kaganovich, Edward A. Startsev, and Ronald C. Davidson


