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Whistler Wave Excitation and Effects of Self-Focusing on Ion Beam Propagation through a 

Background Plasma along a Solenoidal Magnetic Field 

 

Mikhail A. Dorf, Igor D. Kaganovich, Edward A. Startsev, and Ronald C. Davidson 

Plasma Physics Laboratory, Princeton, New Jersey, 08543 

 

This paper extends studies of ion beam transport through a background plasma along a solenoidal 

magnetic field [I. Kaganovich et al., Phys. Plasmas 15, 103108 (2008)] to the important regime of moderate 

magnetic field strength satisfying 2ce b peω β ω> . Here, ceω  and peω  are the electron cyclotron frequency 

and electron plasma frequency, respectively, and b bv cβ =  is the directed ion beam velocity normalized to 

the speed of light. The electromagnetic field perturbations excited by the ion beam pulse in this regime are 

calculated analytically, and verified by comparison with the numerical simulations. The degrees of beam 

charge neutralization and current neutralization are estimated, and the transverse component of the Lorentz 

force associated with the excited electromagnetic field is calculated. It is found that the plasma response to 

the ion beam pulse is significantly different depending on whether the value of the solenoidal magnetic field 

is below or above the threshold value specified by , and corresponding to the resonant 

excitation of large-amplitude whistler waves. The use of intense whistler wave excitations for diagnostic 

purposes is also discussed. 

pebω
cr
ceω = β2

 

I.  INTRODUCTION 

 

Neutralization and focusing of a charged particle beam by a background plasma form the 

basis for a variety of applications to high energy accelerators and colliders1,2, ion-beam-driven 

high energy density physics and fusion3,4, and astrophysics5,6. For instance, one of the modern 

approaches to ion beam compression for heavy ion fusion applications is to use a dense 

background plasma which charge neutralizes the ion charge bunch, and hence facilitates 

compression of the bunch against strong space-charge forces3-4,7-8. Additional control and focusing 

of the beam pulse can be provided by the application of a solenoidal magnetic field in the 

neutralizing region9,10,11,12,13. It has recently been demonstrated that even a weak magnetic field 

can significantly change the degrees of charge neutralization and current neutralization of an ion 

beam propagating through a background plasma14-15. In Refs. [14, 15] detailed analysis of an ion 
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beam propagating through a neutralizing plasma background along a solenoidal magnetic field has 

been performed for the regime of a weak applied magnetic field satisfying 2ce b peω β ω< , where 

ceω  and peω  are the electron cyclotron and plasma frequencies, respectively, and b bv cβ =

e

 is the 

directed ion beam velocity normalized to the speed of light c. In this paper, we extend earlier 

studies of nonrelativistic beam neutralization to the case where 2ce b pω β ω>

b pe

. An important 

difference between the two regimes appears to be due to excitation of electromagnetic wave-field 

perturbations, which propagate oblique to the beam axis for the case where the applied magnetic 

field exceeds the threshold value corresponding to 2cr
ceω β ω

2ce b pe

= . Therefore, the slice 

approximation previously used for the analysis of the case where ω β ω<  in Refs. [14, 15], 

and not taking into account the effects of coupling between the longitudinal and transverse 

dynamics cannot, in general, be applied in the present studies, and a different approach has to be 

developed. Note that the threshold value of the magnetic field can be expressed as 

( )1 23 112 10c b pB n cm kGβ −⎡ ⎤⎣ ⎦= . For instance, for an ion beam with ~ 0b .05β  propagating 

through a background plasma with density np~1011 cm-3, this corresponds to a relatively weak 

magnetic field of 100 G. 

In the present analysis, we consider a fast ion beam pulse with velocity much greater than 

the Alfven velocity, and therefore the beam ions cannot interact effectively with ion Alfven wave 

excitations. Furthermore, we assume a smooth beam density profile with a characteristic axial 

length scale for density variation, , much greater than the wavelength of electron plasma wave 

excitations, 

bl

b bl v peω>> . Therefore, electrostatic electron plasma wave excitations are also 

significantly suppressed16-17. However, if a sufficiently strong ambient magnetic field with 

2ce b peω β ω>  is present inside the neutralizing region, the ion beam pulse can effectively interact 

with the electromagnetic electron whistler branch of the plasma dispersion relation18-19. Therefore, 

in the present paper we analyze excitation of the whistler branch by an ion beam pulse propagating 

through a neutralizing plasma along a solenoidal magnetic field, and assess its influence on the 

degrees of beam charge neutralization and current neutralization, and the transverse beam 

dynamics. 

 The fundamental problem of whistler wave-field perturbations excited by a charged 

particle beam propagating in a magnetized plasma has been extensively studied for several 
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decades, and various methods have been developed19,20,21,22,23,24. Recent interest in this problem 

has been motivated by possible use of charged particle beams for space communications. 

Propagating in the magnetized ionosphere or the magnetosphere plasma, charged particle beams 

can excite whistler wave-field perturbations, and therefore can be used as compact on-board 

emitters in the very-low-frequency range, replacing large-apertures electromagnetic antennas19-21. 

Analytical and numerical studies of whistler branch excitations by a density-modulated electron 

beam propagating through a background plasma along a uniform magnetic field, including both 

linear and nonlinear effects have been reported in Refs. [22-24]. However, in those calculations the 

case of a thin beam with  has been considered, and the effects of the transverse beam 

structure have not been taken into account. Here,  is the characteristic beam radius, and 

1
br k −

⊥<<

br k⊥  is the 

perpendicular component of the whistler wave vector. Note that in contrast to space-physics 

phenomena, where the wavelength of the whistler waves is large compared to the beam radius, for 

the parameters typical of neutralized intense ion beam transport applications, the beam radius can 

be comparable to the perpendicular wavelength. Furthermore, an axially-continuous, density-

modulated beam with modulation period  has been considered in Refs. [ml 22-24], and therefore a 

monochromatic wave excitation with frequency b mv lω =  was obtained. Note that a finite-length 

ion beam pulse with a bell-shaped (not modulated) axial density profile used in intense beam 

transport applications can excite a broad frequency spectrum with a characteristic frequency 

~ b bv lω  and bandwidth ~δω ω . Therefore, in the present analysis we consider excitation of the 

electromagnetic whistler branch by a finite-length ion beam pulse propagating through a 

background plasma along a solenidal magnetic field, taking into account the effects of the 

longitudinal and transverse beam structures.  

In the present paper we demonstrate that the total electromagnetic field excited by the ion 

beam pulse can be conveniently represented as the sum of two components: a local field 

component, corresponding to the local polarization of the background plasma, and rapidly 

decaying to zero outside the beam pulse; and a wave field component that can extend far outside 

the beam. It is then shown that in the regime where 2ce b peω β ω>>  the local-field component has 

the dominant influence on the transverse beam dynamics. Moreover, in this limit, a positive charge 

of the ion beam pulse becomes over-compensated by the plasma electrons, resulting in an 

enhanced transverse focusing of the beam ions. Note that for the case where 2ce b peω β ω<  
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considered in Refs. [14, 15], the beam charge is under-neutralized, and the radial electric field has 

a defocusing effect. Furthermore, it is shown that the local plasma response is changing from 

paramagnetic for the 2ce b peω β ω<  case [14, 15], to diamagnetic for the 2ce b peω β ω>  case. The 

threshold value of the magnetic field 2cr
ce b peω β ω= , which separates these qualitatively different 

regimes of ion beam interaction with the background plasma, corresponds to the resonant 

excitation of a large-amplitude wave-field component [22].  

It is important to point out that the effects of resonant wave excitation can be utilized for 

diagnostic purposes. Indeed, placing a pick-up loop outside the beam pulse and varying the 

amplitude of the applied magnetic field, a large-amplitude signal will be detected when the applied 

magnetic field approaches the threshold value specified by 2cr
ce b peω β ω= . Therefore, it is expected 

that this scheme can be utilized as a passive diagnostic tool to measure the beam velocity or 

plasma density.   

This paper is organized as follows. The theoretical model and assumptions in the present 

analysis are described Sec. II. In Sec. III we consider the regime of resonant wave excitation, 

present the asymptotic time-dependent solution in the linear approximation, and estimate the 

saturation amplitude due to the nonlinear response of the plasma electrons. The analytical solutions 

for the electromagnetic field are compared to the results of numerical particle-in-cell simulations in 

Sec. IV. Finally, in Sec. V a detailed analysis of the local field excitations, including the effects of 

enhanced beam self-focusing, is presented.  

 

II. THEORETICAL MODEL 

 

In this section we calculate the electromagnetic field excitation generated by an ion beam 

pulse propagating through a cold background plasma with a constant velocity, vb, along a uniform 

magnetic field . The beam carries a current of zBext ˆext =B ( ),bb b bj Z en z v t x= − , where Zb is the 

beam ion charge state, -e is the electron charge, nb is the beam number density, and  x and z are the 

transverse and longitudinal coordinates, respectively. For simplicity in the analytical studies, we 

consider here 2D slab (x,z) geometry, and the results of numerical simulations in cylindrical (r,z) 

geometry are presented in Sec. IV. Provided the beam density is small compared to the plasma 

density (nb<<np) , we assume a linear (small-signal) plasma response and obtain the following 

 4



equation for the Fourier transforms of the perturbed electromagnetic field components  

 and ( ), exp x zd d i t ik x ik zωω ω= − +∫ kE k E + +( ), exp x zd d i t ik x ik zωω ω= − +∫ kB k B  [25]: 

2
2k ,kE k 2

4( ) i
c cω ω ω
ω ε− ⋅ − ⋅ =,k ,k ,kk E E ω

π jI .                                      (1)                                                

ε
I

( )
 is the dielectric tensor describing linear response of the cold plasma electrons25 with Here, 

, 221 ωωε pezz −= , and ([2221 cepeyyxx ωωωεε −−== )]222
cecepeyxxy i ωωωωωεε −=−= , where 

( ) 2124 eπ eppe mnω =  is the plasma frequency, cmeB eextce =ω  is the electron cyclotron frequency, 

and the plasma ion response is neglected provided x b ik l m m<< e
26. Here, me and mi are the 

electron mass and ion mass, respectively. Finally, we neglected perturbations in the ion beam 

motion, assuming that the time duration of beam-plasma interaction is smaller than the 

characteristic time for the ion beam response [26]. The space-time Fourier transform of the beam 

current is specified by ( ) ( ), ,b z x zZ en k k k vω δ ω= −k kj , where 

( ), edxn (xpb xx ik x ik )zn dξ ξ ξ= − −∫k .  

It is straightforward to show for this model of the beam current that Eq. (1) yields a steady-

state solution, in which all quantities depend on z and t solely through the combination bz v tξ = − . 

In what follows, we assume that the beam pulse is sufficiently long, with rb<<lb and 

~ b b pev lω ω<< . Note that the latter condition implies that electrostatic electron plasma wave 

excitations are significantly suppressed16-17. Finally, in this section, for simplicity we assume that 

pece ωω << , and a general analysis for the case of an arbitrary ratio of pece ωω  can be found in 

Appendix A. For present purposes, it is particularly important to analyze the x-component of the 

electric field perturbations, Ex, and the y-component of the magnetic field perturbations, By, which 

determine the transverse dynamics of the beam particles. After some straightforward algebra we 

obtain the following Fourier transforms of the transverse electromagnetic field components 

                                      
( )

( )
( )

2 23 2 2

2 2 22 2 2 ,

x
z b z bb x ce

e pe wh x zp pe pe

eE k v n k vc Z k ki
m c k kn c k

ω δ ωω
ω ωω ω

−
= −

−+
,k k

ω
,                                 (2) 

                                       
( )

( )
( )

2 2

2 2 2 2 2 ,

y
b b pe x z b z b

e pe p pe wh x z

Z ckeB k v n k v
i

m c n c k k k
ω β ω δ ω
ω ω ω ω

−
= −

+ −
,k k ,                                       (3) 
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where use has been made of Faraday’s equation, ( ) EkB k ×=,ωω c , to obtain the perturbed 

magnetic field component. Here, cvbb =β , , and  222
zx kkk +=

                                                    ( )
( )

2 2 2
2

22 2 2
, ce z

wh x z

pe

k kk k
k c
ωω
ω

=
+

,                                                      (4) 

is the dispersion relation for the electron whistler branch. The electromagnetic field perturbations 

Ex and By, can now be obtained by applying inverse space-time Fourier transforms to Eqs. (2) and 

(3). Integration over the frequency ω readily gives  

                                     
( )

( )
( )

2 23 2 2

2 2 2 22 2 2

exp
,

x
z b zb x ce

e pe z wh x zp pe pe

k v n ik vtc Z k keE i
m c k v k kn c k

ω
ω ωω ω

−
= −

−+
kk ,                                 (5) 

                                        
( )

( )
( )

2 2

2 2 2 2 2 2

exp
,

y
b pe x z b z

e pe p pe z wh x z

Z ck k v n ik vteB i
m c n c k k v k k

β ω
ω ω ω

−
= −

+ −
kk .                                     (6) 

It is evident that the onset of wave-field generation by the beam pulse corresponds to existence of 

real solutions to  

( )2 ,wh x z z bk k k vω = 2 2

bv

.                                                               (7) 

Note that the condition in Eq. (7) is equivalent to the resonance condition for Cherenkov radiation, 

namely , where  is the z-component of the whistler wave phase velocity.  ph
zV = ph

zV

 

(a) Properties of the excited whistler waves 

 

It is straightforward to show that real solutions to Eq. (7) exist, provided 

                                                            2ce b pe 1α ω β ω= > ,                                                              (8) 

as illustrated in Fig. 1(a). For this case, the solutions  correspond to the long-wavelength 

electromagnetic part of the whistler branch, 

2 2
,em qsk k=

em pek k cω= < , and the short-wavelength quasi-

electrostatic part, ckk peqs ω>=  [Fig. 1(a)]. In the limit where 1>>α  the solutions are 

approximately given by  

                                             
2 pe

qsk
c

αω
≅ , 

2
pe

emk
c

ω
α

≅ .                                                        (9) 
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Note that for a long beam pulse with 1
,qs emk l  the transvers1 ~z b k− −>>

eld are approximately given by emqsx kk ,±≈  [see Fig. 1(b)].  

The directions of the x-component of the group velocity Vgx for the excited wave field are 

illustrated in Fig. 1(b). Note that the quasi-electrostatic and the long-wavelength electromagnetic 

whistler waves with the same signs of phase velocity have opposite signs of group velocity, Vgx. 

Furthermore, it can be shown that the z-component of the group velocity for the short-wavelength 

quasi-electrostatic wave field is smaller than the beam velocity. In contrast, the long-wavelength 

electromagnetic wave field propagates in the z-direction faster than the beam. Therefore, the long-

wavelength electromagnetic perturbations excited by the beam tail can propagate along the beam 

and influence the dynamics of the beam head. A schematic illustration of the whistler wave 

excitations is shown in Fig. 2.  

. (b) The c

te positive and 

gative signs, respectively, of the x-component of the group velocity for the excited waves. 

Fig. 1.  Plots of solutions to Eq. (7) corresponding to the wave vectors of the excited whistler wave-field. (a) 

The absolute value of the normalized z-component of the whistler wave phase velocity (solid curve) is 

intersected by different values of the normalized beam velocity βb (dashed lines) ircles on the plane 

(kx,kz) illustrate the solutions to Eq. (7). For the case of a long beam pulse with 1
,b qs wl k −>> , the wave vectors 

primarily excited are illustrated by the short vertical bold lines. Red and blue colors illustra

ne
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) Wave-field and local-field components of the excited electromagnetic perturbations 
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(b

Wave-field excitations for the case where 1α >  are associated with the poles in Eqs. (5)-

(6), which appear e of the wave vector components (kx,kz). Note, for the case of a 

long beam pu t the pole locations on the real kx-axis depend weakly on the 

value of kz, 

in the real spac

lse, m  tha 1 1
,~z b qs ek l k− −>> ,

( ), ,1 22 2
x em qs z em qsk k k k≅ ± + . It is therefore convenient to carry out the inverse Fourier 

integration, first along the kx-axis, and then along the kz-axis. To properly account for the pole 

contributions, the integration over kx-space should be carried out along the Landau contour, CL, as 

illustrated in Fig 3. Note that integration along the contour CL shows that sufficiently far outside 

the beam only wave fields with a positive (negative) x-component of group velocity propagate in 

the region x>0 (x<0).  

 

 the beam pulse, and the 

short-wavelength quasi-electrostatic wave-field propagates toward the beam tail. 

 

Fig. 2. Schematic illustration of the whistler waves excited by the ion beam pulse. In the beam frame of 

reference, the long-wavelength electromagnetic wave-field propagates ahead of

quasi-electrostatic field

B

Vb
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w
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quasi-electrostatic field
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Fig. 3. Integration contours used for evaluation of the integrals in Eqs. (4)-(5). Frames (a) and (b) show 

Landau contours CL corresponding to kz<0 and kz>0, respectively. Frames (c) and (d) illustrate contours of 

integration equivalent to the ones shown in Frames (a) and (b), respectively. Red and blue colors are used 

to illustrate the integration contours for x>0 and x<0, respectively. 

To demonstrate this fact, as an illustrative example, we consider the simple case where the 

spectrum of the beam density is an analytical function in the complex kx-plane, which satisfies 

( )exp 0xn k x− →k  for large values of |kx|. Considering x>0, and closing the Landau contour 

through a semi-circle of an infinitely large radius lying in the upper-plane [Figs. 3(a) and 3(b)], we 

readily obtain that the wave field excitations correspond to contributions from the poles at kx=–kem 

and kx=kqs for kz<0, and at kx=kem and kx=-kqs for kz>0. Note that the group velocity of these waves 

is indeed directed away from the beam, i.e., Vgx>0 [see. Fig. 1(b)]. Finally, it should be pointed out 

that the integration contours CL are different for the cases where kz>0 and kz<0. Therefore, even for 

a symmetric longitudinal beam density profile, the electromagnetic field perturbations are not, in 

general, symmetric around the beam center, implying oblique wave propagation.  

For present purposes, it is convenient to represent the integration along the contour CL for 

x>0 (x<0) as an integral along a slightly shifted upward (downward) contour C+ (C-) lying below 
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(above) the poles of nk, plus (minus) the residues of the relevant on-axis poles [Figs. 3(c) and 

3(d)]. For a beam with a smooth radial profile it can be shown that the contribution from the on-

axis poles corresponds to the wave-field components of the electromagnetic field perturbation 

( ) extending far outside the beam, and the integral along the path C+ corresponds to the 

local-field components ( ) that rapidly decays to zero outside the beam. Assuming 

 for a sufficiently long beam pulse, we obtain the following approximate expressions 

for the wave-field components of the electromagnetic field perturbation for x>0, 

W
y

W
x BE ,

,zk k<<

loc
y

loc
x BE ,

em qs

                                                     ( ) (2 2

2W
y pe b b

em qs
e pe p qs em

eB Z
b b

m c cn k k
πω β

ω
=

−
)+ ,                                          (10) 

                                                  
( ) (

2

2 2

2W
x b ce

em qs
e pe p pe qs em

eE Z e e
m c cn k k

π ω
ω ω

=
−

)+ .                                        (11) 

Here,  

               ( ) ( ) (2 2 2 2 2
, , , , ,

0

, cos 1 2qs em qs em pe z qs em z z qs em z qs emb k c dk n k k k k k kω ξ
∞

= ± + ⎡ + ⎤) x⎣ ⎦∫ k ∓ ,             (12) 

                           ( ) (2 2
, , , , ,

0

, cos 1 2qs em qs em z qs em z z qs em z qs eme k dk n k k k k k kξ
∞

= ± ⎡ + ⎤)2 x⎣ ⎦∫ k ∓ ,                   (13) 

are the electric and magnetic components corresponding to the quasi-electrostatic (with subscript 

“qs”) and the long-wavelength electromagnetic (with subscript “em”) waves, respectively, and 

bz v tξ = − . Note that the correction term, ( )2
,2z em qsk kδϕ = x , which we only retained in the phase 

of the wave-field component, yields a curvature in the phase fronts, and a corresponding decrease 

in the wave-field amplitude for . The local fields are given for x>0 by 2
,b em qsx l k≥

                                 
( )

( )( )
2 2 2

2 2 2 2
xz

loc
pe b x x pey ik xik

z x
e pe p x em x qsC

Z k k ceB
i dk e dk e n

m c cn k k k k
ξ ω β ω

ω
+

∞

−∞

+
= −

− −∫ ∫ k ,                          (14) 

                                 
( )( )

3 2

2 2 2 2
xz

loc
ik xikx b

z x
e pe p pe x em x qsC

eE Z ki dk e dk e n
m c cn k k k k

ξ ω
ω ω

+

∞

−∞

= −
− −∫ ∫ k

x ce .                     (15)  
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Vg Vg 

 

 
Fig. 4. Plots of the steady-state amplitude of the transverse magnetic field perturbations By. The beam-

plasma parameters correspond to Zb=1, lb=10c/ωpe, βb=0.33, and np=2.4·1011 cm-3. The applied magnetic 

field, Bext=1600 G, corresponds to α=ωce/(2βbωpe)=1.54. The frames show (a) primarily excitation of long-

wavelength electromagnetic waves by a wide-aperture ion beam with rb=2.5c/ωpe; and (b) primarily 

excitation of short-wavelength quasi-electrostatic waves by a thin beam with rb=0.5c/ωpe. The information 

used in obtaining the plots is obtained from Eqs. (A1)-(A7). The normalization factor in Frames (a) and (b) 

is given by B0=4πnb0Zbeβbrb. The arrows schematically illustrate the direction of the wave packet group 

velocity. Dashed lines correspond to the contour of constant beam density corresponding to the effective 

beam radius rb. 

 

 

 

 

 

 

 

 

 

It should be noted that for the case where the beam density profile is specified by 

, the integration over the kz-space can be carried out independently 

from the kx-space integration. Therefore, the axial dependence of the local fields is determined 

solely by the beam density axial profile, that is 

( ) ( ) (,b b x zn x z v t n x n z v t− = − )b

( ) ( ),, ( )loc loc
z b E BE B n z v t= − Φ x . In contrast, it is 

readily seen from Eqs. (10)-(13) that the wave field propagates obliquely to the beam. This implies 

a coupling between the transverse and longitudinal dynamics of the system, and therefore limits 

the validity of the slice approximation. 
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Features of the steady-state whistler wave excitation are shown in Fig. 4 for the following 

illustrative parameters: ( )22 2 2
0 expb b b b bn n r r z v t l⎡ ⎤= − − −⎣ ⎦ , lb=10c/ωpe (beam pulse duration 

τb=lb/vb=30.3/ωpe), vb=0.33c, nb0=0.05np, np=2.4·1011 cm-3
, and Bext=1600 G. It is readily seen for a 

wide-aperture beam, rb=2.5c/ωpe, that the long-wavelength electromagnetic part of the whistler 

branch is primarily excited [Fig. 4 (a)], and the amplitude of the quasi-electrostatic wave field is 

exponentially small [see Eq. (12)]. In contrast, for the case of a thinner beam, rb=0.5c/ωpe, the 

short-wavelength quasi-electrostatic waves are primarily represented in the excited spectrum [Fig. 

4(b)] due to the large excitation factor, ( )2 2 2
qs pek ω+ c , in front of the integral in Eq. (12).  Note 

that for the parameters in this illustrative example, ~ce peω ω , and therefore to obtain the plots in 

Fig.4, we used Eqs. (A1)-(A7), which include ce peω ω  correction terms. 

 

(c) Time evolution of the wave-field perturbations 

  

It should be noted that the denominators in Eqs. (10)-(11) can be expressed as  

                                        2 2 2 24 1qs em pek k cα α ω− = − 2 ,                                                    (16) 

and it readily follows that there is strong resonant wave excitation for the case where the poles are 

merging, corresponding to 12 == pece βωωα  and qs em pek k cω= =  [see Fig. 1(a)]. Indeed, it can 

be shown in the limit 1α =

0gxV =

 that the group velocity of an excited wave packet becomes equal to the 

beam velocity, i.e., , gzV v= b . That is the wave packet is moving together with the beam 

pulse, and can therefore be amplified to very large amplitude (during a very long time interval), 

assuming a linear plasma response. The wave-field intensity, however, will be saturated either by 

nonlinear processes or due to dissipation (collisions). Note that the local fields specified by Eqs. 

(14)-(15) do not have singularities at 1=α .  

For the case where 1>α , the wave-field amplitude reaches a finite quasi-steady-state limit 

with a characteristic time scale of { }~ min ,s b gx b gz br V l V vτ − . This time interval is required for an 

initial transient wave packet to propagate sufficiently outside the beam pulse.  For the excited 

wave vectors specified by Eq. (7), it can be shown that ( )gx gz b xV V v k k− = z

em

. Therefore, for a 

sufficiently long beam pulse with , the wave perturbations propagates primarily in the 1
,b qsl k −>>
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transverse direction, and leaves the beam in the time period ~s b gxr Vτ . For the case where 1α ≥  

and ~br c peω , making use of Eqs. (4) and (7), we obtain ~ ~s b gx b br V l vτ .  That is, the time 

scale for achieving a quasi-steady-state is of order the beam pulse duration, and is therefore much 

longer than the plasma period, i.e.,  

                                                                   ~ 1s b b pel vτ ω>>                                                       (17) 

Note that this result is significantly different from the case Bext=0, where the characteristic time to 

reach a quasi-steady-state is of order of the plasma period.  

 

(d) Influence of the excited wave field on  beam charge neutralization and current neutralization 

 

It is of particular interest for neutralized beam transport applications to estimate the degrees 

of beam charge neutralization and current neutralization associated with the excited wave field. 

Here, we consider the case where 1α ≥ , and the limit where 1α >>  and the analysis of the local-

field component is addressed in Sec. V. It is convenient to introduce 0 04 b bE n Z berπ=  and 

0 04 b b b bB n Z e rπ β=  that represent, respectively, the characteristic transverse self-electric field and 

self-magnetic field generated by an ion beam propagating in vacuum. Here, nb0 and rb are the 

characteristic values of the beam density and radius. The degrees of beam charge neutralization 

and current neutralization can now be effectively measured by Ex/E0 and By/B0. Considering, for 

simplicity, a Gaussian beam density profile with ( ) 2 2 2 2
04 exp 4b b b b x b zn r l n r k l kπ= −k 4−⎡ ⎤⎣ ⎦ , it 

follows from Eqs. (10)-(13) that the degrees of beam charge neutralization and current 

neutralization associated with the wave field excitations is given by  

                        
( ) ( ){ }2 2 2 2 2 2 2

2
0

max exp 4 ,exp 4
~

4 1

W
qs pe b qs b emy c k r k r kB

B
ω

π
α α

− −

−
,                     (18) 

              
( ) ( ) ( ) ( ){ }2 2 2 2 2 2 2 2 2 22

2 2
0

max exp 4 , exp 4
~

4 1

W
qs pe b qs em pe b emx ce

pe

c k r k c k r kE
E

ω ωωπ
ω α α

− −

−
.  (19)                      

It readily follows from Eqs. (18)-(19), for the case where 12 ≤embkr  and 1≥α , that the beam 

current is not neutralized, i.e., 0 ~ 1W
yB B . The beam charge is, however, well-neutralized, i.e., 

0 1W
xE E << , provided pece ωω <<  [this is due to the factor 2 2

ce peω ω  in Eq. (19)]. For the case 
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where ~ce peω ω , the degree of charge neutralization decreases, giving 0 ~ 1W
xE E , (see Appendix 

A), which is consistent with the analysis in Ref. [15].  

 

III. RESONANT WAVE EXCITATION: THE ASYMPTOTIC TIME-DEPENDENT 

SOLUTION 

 

In the previous section, it was demonstrated for the critical case where 1α = , that very-

large-amplitude wave-field excitations are predicted by the linear theory for a quasi-steady-state 

solution. This effect of large-amplitude wave-field excitations in the limit of merging poles 

corresponding to 12 == pece βωωα  and qs em pek k cω= =  (so-called double pole case) has been 

previously reported in Refs. [22-23] for the case of an axially-continuous and thin ( 1br k⊥ << ) 

electron beam with a periodically modulated axial density profile. In those calculations, weak 

dissipation (due to collisions) [22], or nonlinear interaction between the beam electrons and the 

excited whistler waves [23] were assumed in order to estimate the saturated amplitude of the 

electromagnetic field perturbations. In the present analysis we obtain the asymptotic time-

dependent solution for the wave amplitude in the linear approximation. Furthermore, we discuss a 

possible mechanism for saturation of the wave field intensity associated with the nonlinear 

response of the background plasma electrons, which can drive the system off resonance. Provided 

the beam ions are sufficiently massive, the saturation determined by this mechanism can occur 

before the nonlinear interaction between the beam ions and the excited whistler waves becomes 

important.  

To describe the time-evolution of the electromagnetic field perturbation excited by the ion 

beam pulse, we solve here an initial-value problem, making use of Laplace transforms with respect 

to time. Note that the temporal Fourier transform used in Sec. II yields only the steady-state 

solution. In this section, we assume that the initial electromagnetic field is zero everywhere, and 

the beam current (source) is instantaneously turned on at t=0, i.e., ( ), (b b b b )j Z en z v t x H t= − , 

where H(t) is the Heaviside step function defined by H(t)=0 for t<0, and H(t)=1 for t≥0. Similar to 

Eq. (3), we obtain that the space (Fourier) - time (Laplace) transform of the perturbed transverse 

magnetic field is given by 

 

 14



                    
( ) ( ) ( )

3 3 2
,

2 2 2 2 2

1
2 ,

y
pe b b z x

e pe p pe wh x z z b

c Z k keB n
m c n c k k k k v

ω ω β
ω π ω ω ω ω

= −
+ − −⎡ ⎤⎣ ⎦

k k .                       (20) 

The inverse Laplace time transform performed in the complex ω-plane readily gives 

          ( )
( ) ( )

( )
( )

( )

3 3 2

2 2 2 2 2 2

exp exp exp
2 2

y
pe b b z x z b wh wh

e pe p pe z b wh wh wh z b wh wh z b

c Z k k n ik v t i t i teB i
m c n c k k v k v k v

ω β ω ω
ω ω ω ω ω ω ω

⎡ − −
= − + +

⎤
⎢ ⎥+ − − +⎣ ⎦

kk .     (21)       

Note that the first term inside the brackets in Eq. (21) corresponds to the steady-state solution 

[compare with Eq. (6)], in which all quantities depend on t and z exclusively through the 

combination bz v tξ = − . The other two terms describe the time evolution of the transient 

excitations. Assuming a sufficiently long beam pulse, , for the double-pole case 

corresponding to 

1
,~z b qs ek l k− >> 1

m
−

2 1b peceα ω β ω= = , Eq. (21) takes the form                           

      ( ) ( )
( )

( ) ( )
( )

3 2

2 2

exp exp exp exp
2

y
pe b b z x wh z b wh z b

e pe wh z b p x pe x pe

cZ k k n i t ik v t i t ik v teB i
m c k v n k c k c

ω β ω ω
ω ω ω ω

⎡ ⎤− − − − −
⎢ ⎥= − − +
⎢ ⎥− +⎣ ⎦

kk .   (22) 

The right-hand side of Eq. (22) has two critical points on the real kx-axis corresponding to 

ck pex ω±= . However, for the case where 1α = , the dispersion relation yields 

( ),wh pe z z bc k k vω ω± = ± . Furthermore, the x-component of the group velocity is equal to zero at 

the critical points, ( ,gx x pe zV k c kω= ± =) 0 . Therefore, the time-dependent solution in Eq. (22) is 

regular at the critical points, ck pex ω±= , and the inverse Fourier integration in kx-space can be 

carried out along the real axis. Note that at large times, 1whtω >> , the contribution to the integral 

comes mainly from the regions near the points of stationary phase, where 0wh x gxk Vω∂ ∂ ≡ = , 

which coincide with the critical points ck pex ω±= . The asymptotic time-dependant solution is 

then given by   

        
( ) 22

2 2

exp sgn 2 1
, sin

z b

z

y ik v t
k z wh xpe b b pe pe

z x
e pe p x

eB i k k tZ e
n k x d k

m c c n c c k
ωω β ω ω

ω

− ∞

−∞

′′ Δ −⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎣ ⎦= − Δ⎜ ⎟ ⎜ ⎟ Δ⎝ ⎠ ⎝ ⎠ ∫k ,   (23)     

where , ∫
∞

∞−

= xiky
x

y
k

x

z
eBdkB k

2 2 3

x pe
wh wh x z b pek c

k c k
ω

2ω ω
=

′′ = ∂ ∂ =⎡ ⎤⎣ ⎦ β ω , and it has been assumed that 

( ) ( )zpezpe kcnkcn ,, ωω −= kk . Noting that ( )[ ] (∫
∞

∞−

−±=−± 121exp 22 ixixdx π ) , we obtain                      
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3 22

sin ( )y pe b b pe
z

e pe p

eB v Z
t

m c n c
πω ω

ω
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

x N z ,                                        (24)          

where  

                                ( ) ( )[∫
∞

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0

sincos, ξξ
ω

zzz
pe

zzz kkk
c

nkdkN k ] ,                                         (25) 

and a symmetric beam profile with ( ) ( ),pe z pe zn c k n cω ω , k= −k k  has also been assumed. 

Equations (24)-(25) describe the asymptotic evolution of the wave field for the double pole case 

corresponding to 12 == pece βωωα . It is readily seen from Eq. (24) that at sufficiently large 

times, 2 1wh bt rω′′ >> , the amplitude of the magnetic field is given by 

         ~y b b b b b bB v t l Z en rβ ,                                                          (27) 

provided the beam radius is of the order of or smaller than the electron skin depth. 

As the amplitude of the resonantly-excited electromagnetic field perturbation increases, 

nonlinear processes can provide saturation of the energy transfer from the beam to the wave field.  

Here, we consider a plausible mechanism to describe saturation of the wave field intensity, in 

which the enhanced electromagnetic field perturbation generated by the ion beam pulse modifies 

properties of the whistler waves, and drives the system off resonance. Indeed, as the longitudinal 

component of the magnetic field perturbation Bz increases, the resonance condition becomes less 

accurate, 2NL
NL ce b peα ω β ω= >1, where ( ) cmBBe ez

NL
ce += 0ω . Recalling that the form of the 

resonance denominator is given by ( )11 2 −αα , the normalized magnitude of the perturbed 

longitudinal magnetic field ( ) ( )2z e b peeB m cα β ωΔ ≡  can be estimated by 

( )( ) ( ) 1 22~ 1b b p b peZ n n r cα ω α
−

Δ ⎡ + Δ⎣ 1− ⎤⎦  provided the beam radius is of the order of or smaller 

than the electron skin depth [see Eq. (B5)]. It now follows that the wave-field intensity saturates at 

the approximate level  

                                             ( ) ( )2 3 2 32 3~ b b p b peZ n n r cαΔ ω .                                          (28) 

For the case of low beam density, pb nn << , this amplitude of the electromagnetic field 

perturbation is significantly higher compared to the case of non-resonant excitation, 1>α , where 

the normalized steady-state amplitude is proportional to pb nn . Finally, we emphasize that 
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although the mechanism considered for the wave-field intensity saturation seems plausible, further 

detailed analytical and numerical studies are required to validate it.  

The resonant excitation of whistler waves has been observed in numerical particle-in-cell 

simulations performed using the two-dimensional slab (x,z) version of the LSP code27 taking into 

account electromagnetic effects. As an illustrative example, we consider a Gaussian ion beam 

pulse, ( )22 2 20.05 expb p b bn n r r z v t⎡= − − −⎣ ,bl ⎤⎦  with effective beam radius rb=0.92c/ωpe, and beam 

pulse half-length, lb=9.2c/ωpe (beam pulse duration τb=lb/vb=27.8/ωpe), propagating with velocity 

vb=0.33c through a background plasma with density, np=2.4·1011 cm-3. In the numerical 

simulations, the ion beam is injected through the lower boundary of the simulation domain into an 

unperturbed magnetized plasma, and it propagates in the z-direction exciting electromagnetic field 

perturbations. Figure 5 shows the results of the numerical simulations for the time-evolution of the 

maximum value of the perturbed transverse magnetic field By. Note that for the parameters in this 

illustrative example, ωce~ωpe and βb=0.33, and therefore a generalized analysis for arbitrary value 

of ωce/ωpe should be carried out in order to estimate corrections to the resonance condition. The 

analysis shows (see Appendix A) that the resonant excitation of the wave field should occur at 

( ) ( )21 2ce b b peα ω β β ω= − =� 1 [14]. It is readily seen from Fig. 5 that as  
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Fig. 5. Time evolution of the maximum value of the normalized perturbed transverse magnetic field 

plotted for different vales of the applied magnetic field. The beam-plasma parameters correspond to Zb=1, 

rb=0.92c/ωpe, lb=9.2c/ωpe, βb=0.33, and np=2.4·1011 cm-3. The applied magnetic field corresponds to 

1~ =α  (solid curve), 2.1~ =α  (dashed curve), and 37.1~ =α  (dotted curve).  
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the magnitude of the applied uniform longitudinal magnetic field, Bext, approaches the critical 

value corresponding to 1~ =α , the saturation amplitude of the perturbed magnetic field increases, 

as well as the time interval required to achieve a quasi-steady-state. Note that the perturbed 

transverse magnetic field shown in Fig. 5 is normalized to the magnetic self-field of an 

unneutralized beam, 0 0b b b b4B n Z e rπ β

0~y

= . It is evident, for the quasi-steady-state regime, that the 

beam current is unneutralized, B B , which is consistent with the analytical analysis performed 

in Sec. II.   

Finally, it should be noted that the effect of resonant large-amplitude wave field excitations 

can be utilized for diagnostics purposes in experiments where an ion beam pulse propagates 

through a background plasma along an applied solenoidal magnetic field [3,7-8]. Indeed, 

measuring the perturbed azimuthal magnetic field, for instance, in the vicinity of the chamber wall, 

it can be expected to obtain the following dependence on the value of the applied magnetic field. 

First, at low values of the applied magnetic field, 2ce b pe 1α ω β ω= < , the wave-field component of 

the electromagnetic field perturbation is not excited, and the excited signal is exponentially small. 

As the magnetic field increases, and the threshold value of 2ce b pe 1α ω β ω= =  is reached, a large-

amplitude signal corresponding to resonant wave excitation will be detected. Finally, further 

increase in the magnitude of the applied magnetic field, 2ce b pe 1α ω β ω= > , will lead to a decrease 

in the amplitude of the excited signal. Provided the directed beam velocity is known, this 

diagnostic can be used, for instance, for passive measurements of the background plasma density. 

Indeed, determining the threshold magnitude of the applied magnetic field, Bc, from the 

experimental data, the plasma density can be readily obtained from ( ) 2pe ce c bBω ω β= .  

 

IV. COMPARISON OF ANALYTICAL THEORY WITH NUMERICAL SIMULATIONS  

 

In this section we present the results of the numerical simulations performed with the 

particle-in-cell (PIC) code LSP and compare it with the analytical solutions described in Sec. II. 

Figure 6(a) shows the results obtained with the 2D slab (x,z) version of the code for the amplitude 

of the y-component of the perturbed magnetic field, when a quasi-steady-state is reached. The 

corresponding analytical solution [Eqs. (A1)-(A7)] is shown in Fig. 6(b). The following parameters 
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have been used for this illustrative example: ( )22 2 20.05 expb p b bn n r r z v t bl⎡ ⎤= − − −⎣ ⎦ , rb=0.92c/ωpe, 

lb=10rb (beam pulse duration τb=lb/vb=27.8/ωpe), vb=0.33c, np=2.4·1011 cm-3, and Bext=1600 G . It is 

readily seen from Figs. 6(a) and 6(b) that the results of the numerical simulations and analytical 

theory are found to be in very good agreement. Indeed, the characteristic amplitude of the 

electromagnetic field perturbation, wavelength, angle of the propagation, etc., are quite similar.  

In addition, to verify the approximate analytical solution specified by Eqs. (A1)-(A7), we 

first solved Eq. (1) for arbitrary values of ceωω , peωω , and cepe ωω , and then numerically 

calculated the inverse fast Fourier transforms. Note that in the regime where a wave field is 

excited, the Fourier transforms of the perturbed electromagnetic fields contain singularities in real 

(kx,kz)-space. Therefore, the numerical integration of the fast Fourier transforms (FFT) performed 

along the real kx- and kz- axes would diverge. To remove the singularities from the real axis, weak 

collisions have been assumed for the plasma electron response. Correspondingly, the components 

of the dielectric tensor, εI , should be modified according to [25] 

( ) ( )( )2ν+2 21xx yy pe cei iε ε ω ω ν ω ω ω⎡ ⎤= = − + −⎣ ⎦ ), ([ ]21zz pe iε ω ω ω ν= − + , and 

( )( )22
xy yx pe ce

2iε ε ω ω ω ω ν⎡ ⎤= − = + −⎣ ⎦cei ω , where ν is the effective collision frequency. In the limit 

of zero collision frequency, the numerical FFT calculation should yield the analytical solutions 

given in Eqs. (A1)-(A7). The results obtained in the numerical FFT calculation for the case of 

weak dissipation, ν=0.005/τb, demonstrate very good agreement with the analytical solution 

[compare Fig. 6(b) and Fig 6(c)]. 

It is of particular interest to compare the results obtained for the case of (x,z) slab geometry 

[Figs. 6(a) – 6(c)] to the case of cylindrical (r,z) geometry. The results of the numerical simulation 

obtained using the 2D (r,z) cylindrical version of the LSP code for the same system parameters are 

shown in Fig. 6(d). Results of the (r,z) LSP simulations demonstrate similar wavelength and 

propagation angle for the excited wave field. However, the amplitude of the perturbed 

electromagnetic field is smaller. Furthermore, it decays more rapidly outside the beam pulse, 

compared to the case of the slab beam pulse [compare Fig. 6(a) and 6(d)]. Note for an infinitely 

long beam that the amplitude of an excited electromagnetic field decreases as 1/r for the case of 

cylindrical geometry, and does not decrease for the case of 2D slab geometry. This can provide a 
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plausible explanation of the difference in the wave-field amplitude observed in cylindrical and slab 

geometries.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Plots of the steady-state amplitude of the transverse magnetic field perturbation By. The beam-plasma 

parameters correspond to Zb=1, rb=0.92c/ωpe, lb=10rb, βb=0.33, and  np=2.4·1011 cm-3. The applied magnetic 

field, Bext=1600 G, corresponds to α=ωce/(2βbωpe)=1.54. The Frames correspond to: (a) results of numerical 

simulations obtained using the (x,z) slab version of the LSP code; (b) the analytical solution given by Eqs. 

(A1)-(A7); (c) numerical calculation of fast Fourier transforms, assuming weak collisions ν=0.005/τb; and (d) 

the results of numerical simulations obtained using the (r,z) cylindrical version of the LSP code. The dashed 

lines correspond to contours of constant beam density corresponding to the effective beam radius rb. 
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V. SELF-FOCUSING OF AN INTENSE ION BEAM PULSE 

 

 In this section, making use of Eqs. (10)-(15), we calculate the transverse component of the 

Lorentz force, x b x b b yF Z eE Z e Bβ= −

1~ −
bz lk

, acting on the beam particles. In Sec. II it has been shown 

that the excited wave field perturbations propagate oblique to the beam with characteristic 

longitudinal wave number . Therefore, the contribution of the wave-field component to the 

total Lorentz force can have opposite signs for the beam head and the beam tail. That is, it 

produces a focusing effect in the beam head and a defocusing effect in the beam tail, or vise verse. 

In contrast, the longitudinal profile of the local-field amplitude is the same as the longitudinal 

beam density profile (see Sec. II). Therefore, the local fields provide a focusing (or defocusing) 

effect over the entire length of the ion beam pulse. It is therefore important, in practical 

applications involving control over the beam aperture, to identify the parameter regimes where the 

local component of the electromagnetic field perturbation has the dominant influence on the beam 

transverse dynamics.  

 

(a) Regimes of dominant influence of local fields on the beam transverse dynamics   

 

It has been demonstrated in Sec. II for the critical case where 1=α , that a large-amplitude 

wave field is exited. Here, we consider the case where 1>>α ( 2ce pebω β ω>> ). Furthermore, we 

assume , or equivalently, 1−>> qsb kr ( )peb cr αω2>>  in the limit where 1>>α . This implies an 

exponentially small level of the short-wavelength, quasi-electrostatic wave excitations for the case 

of a smooth radial beam density profile. Making use of Eqs. (10)-(13), it is straightforward to show 

for the case where , that the contribution of the wave-field component of the 

electromagnetic field perturbation to the transverse Lorentz force is given approximately by  

1−>> qsb kr

                                    ( ) ( )2 2 22
2

2

1 4 1
2

4 1
em peW W W e b

x b x b y b

k cm VF Z e E B Z
R

2α ω
β π

α α

− −
= − ≈

−
,                  (29) 

where  

                                                 ( ) [
2

2
0

1 1 , cospe
z em z z em

p

dk n k k k k x
R c n

ω
ξ

∞

= ∫ k ]+ .                                (30)   
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Recall, for 1>>α , that the characteristic wave vector for the excited long-wavelength 

electromagnetic wave field is given by 2em pek cω α= , and therefore the wave field contribution to 

the Lorentz force vanishes for 1>>α . To obtain the local field contribution, it is convenient to 

represent the local fields specified by Eqs. (14)-(15) in the following form 

 

                     
( )2 2 2

2
2 2 2 22

1 1
4 1

x zik x ik
x x peloc

b y b e b
x qs x emp

k k c n e
e B iZ m v d

k k k kn

ξω
β

α α

++ ⎡ ⎤
= − −⎢ ⎥− −− ⎣ ⎦

∫ kk ,                (31) 

                                 
3

2
2 2 2 22

1 1
1

x zik x ik
loc x
x b e b

x qs x emp

k n eeE iZ m v d
k k k kn

ξα

α

+ ⎡ ⎤
= − −⎢ ⎥− −− ⎣ ⎦

∫ kk .                            (32) 

For the case where  

                                                          1>>α  and 1

2b qs
pe

cr k
αω

−>> =                                              (33)  

we can neglect by the first terms inside the brackets in Eqs. (31) and (32), and after some 

straightforward algebra we obtain that the local field contribution, which constitutes most of the 

transverse Lorentz force, is given by  

                                            2 2 1loc loc b
x b x b b y b e b

p

dnF Z eE Z e B Z m v
n dx

β≈ − = .                                        (34) 

The analysis in Appendix A, performed for an arbitrary ratio of pece ωω , shows that for 

the case of a nonrelativistic ion beam the Lorentz force is still given by Eq. (34), provided  

                                          1>>α   and  ( )1 21 2 21
2b qs ce pe

pe

cr k ω ω
αω

−>> = +� .                                  (35) 

Note that the transverse component of the Lorentz force [Eq. (34)] is proportional to the gradient 

of the beam density. Therefore, for the case of a bell-shaped beam density profile, self-focusing of 

the beam occurs. Furthermore, it is interesting to note that an annular beam will not pinch to the 

axis provided the beam dynamics is governed by the force in Eq. (34). However, the outer beam 

radius will decrease and the inner beam radius will increase, resulting in a decrease in the thickness 

of the annulus and an increase in the beam density.  

Although the total influence of the magnetic and electric field components, W
yB  and W

xE , of 

the wave field perturbation results in a destructive interference in estimating the transverse Lorentz 

force [see Eq. (29)], it is of particular interest to estimate the separate contribution of the wave 
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field component to the Lorentz force, and compare it to the contribution of the local field 

component. For illustrative purposes, we consider here a Gaussian beam density profile with 

( ) 2 2 2 2
04 exp 4 4b b b b x b zn r l n r k l kπ= − −⎡ ⎤⎣ ⎦k .  Making use of Eqs. (10)–(13), it is straightforward to 

ld component can be estimated by  

                                           

show that the contribution of the wave fie
2 2 2

2 0~ ~ exppe bW W b b emr n r keE e B Z m V
ω

β ⎛ ⎞
− ,                               (36) 2 2 4y b y b e b

pc nα ⎜ ⎟
⎝ ⎠

provided the conditions in Eq. (33) are satisfied. Similar expressions can be obtained for the local 

fields using Eqs. (31)-(32), i.e., 

                                                
( )

2 0
2 2

1~
max 1,

loc b
x b e b

b p em b

neE Z m V
r n k r

,                                               (37) 

                                           
( )
( )

2 2 2
2 0

2 2

max 1,
~

max 1,
pe bloc b

b y b e b
b p em b

r cne B Z m V
r n k r

ω
β

α 2 ,                                      (38) 

It readily follows from Eqs. (36)-(38), for the case where the beam radius is small compared to the 

wavelength of the long-wavelength electromagnetic waves, 1b emr k << , that the local electric field 

has the dominant contribution to the transverse component of the Lorentz force. As the beam 

radius increases and becomes of order the electromagnetic wave-field wavelength, ~ 1b emr k , the 

separate contributions from all components of the perturbed electromagnetic field be f the 

same order, i.e., ~ ~ ~loc W loc W

come o

x x b x b xE E B Bβ β . With a further increase in the beam radius, 1b emr k >> , 

the local magneti es dominant, and both the quasi-electrostatic and long-

wavelength electromagnetic wave-field components are exited to exponentially small levels for the 

case of a smooth beam density profile.  

The time evolution of the electro

c field contribution becom

magnetic field perturbation for the case where 1>>α  and 
1−<< emb kr  , which corresponds to a dominant influence of the local self-electric field, has 

g the LSP simulation code. Figure 7 shows a plot of the perturbed transverse self-

electric field at the simulation time ts=54 ns. The beam-plasma parameters considered for this 

illustrative example correspond to ( )

1− <<qsk

been studied usin

22 2 20.13 expb p b b bn n r r z v t l⎡ ⎤= − − −⎣ ⎦ , np=1010cm-3, Zb=1, 

rb=0.55c/ωpe, τb=75/ωpe, βb=0.05, Bex ave stru ture in front 

of the beam pulse corresponds to a transient wave-field perturbations associated with the initial 
t=300 G, and α=ωce/2βbωpe=9.35. The w c

asma through the boundary at beam penetration into the pl 0=z . Note that these transient  
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erturbations do not interact with the ion beam pulse effectively, because they do not satisfy the 

herenkov criteria in Eq. (7). Therefore, the energy content in the corresponding wave field is 

onstrated for the case where 

 

 

 

 

 

 

 

 

p

C

attributed only to the initial beam penetration into the plasma, and is not related to the beam energy 

later in time. As the transient wave-field perturbations leave the beam on the characteristic time 

scale τs~min{rb/Vgx, lb/|Vgz-vb|} (see Sec. II), the local component of the self-electric field exhibits 

the dominant influence on the ion beam transverse dynamics, as evident from Fig. 7. The intensity 

of the excited wave field satisfying the condition in Eq. (7) is negligible, which is consistent with 

the analytical calculations performed in this section. 

 

(b) Enhanced ion beam self-focusing 

 

In Sec. V (a), it was dem 12 >>= pebce ωβωα  and 

( )peb cr αω2>> , that the local fields have the dominant influence on the transverse dynamics of 

the ion bea m pulse 

and the correspo

Fig. 7. Plot of the perturbed transverse self-electric field corresponding to ts=54 ns. The system parameters 

correspond to Zb=1, rb=0.55c/ωpe, τb=75/ωpe, βb=0.05, Bext=300 G, and α=ωce/2βbωpe=9.35. The results  

are obtained using the 2D (x,z) version of the LSP code. The dashed curve corresponds to the contour of 

constant beam density corresponding to the effective beam radius rb. 

m particles. In this regime, focusing is provided over the entire length of the bea

nding self-focusing force acting on the beam ions is specified by Eq. (34).  It is of 

particular interest to compare this self-focusing force to the self-pinching force acting on the ion 
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beam particles for the case where the ion beam pulse propagates through an unmagnetized plasma, 

i.e., Bext=0. Indeed, even for this simple case the beam charge is typically better neutralized than 

the beam current, and the self-pinching force is produced by the net self-magnetic field28. This 

self-pinching can be utilized for a variety of applications, including self-pinched ion beam 

transport29, and heavy ion beam focusing30. Note that for the case where Bext=0, the beam current 

is almost unneutralized in the limit where the beam radius is small compared to the electron skin 

depth, b per c ω<< . Therefore, the self-pinching effect is a maximum in this regime.  

For the case where b per c ω<< , the ratio of the collective self-focusing force in the 

presence of an applied magnetic field [Eq. (34)] to the self-pinching force, F , in the lim0 it Bext=0 

case, can be estimated as ( )2
0x b peF F >>  [31]. That is, the self-focusing of an ion beam 

pulse propagating through a neutralizing plasma can be significantly enhanced by the application 

of a solenoidal magnetic fi

~ 1c rω

eld satisfying 12 >>= pebce ωβωα . Here, we emphasize again that the 

threshold value 1crα =  typically corresponds to a weak magnetic field (see Introduction). The 

condition b per c ω<< can be rewritten in terms of the beam current Ib as ( )4.25 kAb b b pI n nβ<< . 

plasma density are in th

Also, note that for a typical ion beam injector aperture of the order of 1 cm, the beam radius (~ 1 

cm) is small com d to the electron skin depth provided the beam and e 

range of ( )

pare
211 32.8 10 [ ]b p bn n r cm cm−< < ⋅ , which are typical parameters for several beam transport 

applications [3,7-8]. Therefore, this self-focusing enhancement can be of considerable practical 

importanc

As a practical example, here we consider parameters characteristic of the present 

Neutralized D

e.  

rift Compression Experiment (NDCX-I) [7] and its future upgrade NDCX-II [8], 

which are designed to study the energy deposition from the intense ion beam onto a target.  The 

experiments involve neutralized compression of an intense ion beam pulse with radius rb~1 cm as 

it propagates through a long drift section with length Ld~200 cm filled with a background plasma 

with density np~1011 cm-3. As it exits the drift section, the beam passes through a strong magnetic 

lens with magnetic field Bs=8 T, and length Ls~10cm, which provides additional transverse 

focusing. For the currently operating NDCX-I experiment, typical beam parameters correspond to 

004.0=I
bβ , 39=I

im a.u., 1=I
bZ . The proposed NDCX-II experiment is aimed at operating at 

higher beam energies: 032.0=IIβ , 7=IIm a.u., 1=IIZ . The corresponding values of the critical b i b
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magnetic field are given by

 ma d of th a

1=I
cB

gnetic l

much lar

30  G and 16=II
cB  G, for NDCX-I and NDCX-II parameters, 

respectively. The fringe fie e stro gnetic lens can penetrate deeply into the 

drift section at a magnitude ger than us providing conditions for enhanced self-

focusing for both NDCX-I and NDCX-II. Moreover, the integrated effect of the beam self-

focusing inside the drift section filled with the background plasma can become comparable to the 

focusing effect of the strong magnetic lens. Introducing the dimensionless parameters 

ng m
III

cB , , th

ssdsf LFLF=δ , where 4~ 2
bcbbs rmF ω  is the magnetic focusing force acting on the beam ions 

inside the lens, and bbesf rVmF 2~  is the self-focusing force (nb~ne is assumed), we readily obtain 

5.0=IIδ  for the ers characteristic of NDCX-I and NDCX-II respectively. 

Here, mb and ωcb ar m mass and cyclotron frequency, respectively. Therefore, the 

e 

comparable to the focusing effect of a strong 8 Tesla final focus solenoid for the design parameters 

characteristic of NDCX-II. 

It should be noted that Eq. (34), along with the conditions in Eq. (35) have been obtained 

previously in Ref. [

04.0=Iδ

plasma

geom

 and  paramet

is in Ref. [ ] was performed for the case of cylindrical 

etry and assum

e the ion bea

-induced collective focusing effect in a several hundred gauss magnetic field can becom

3131]. The analys

ed the slice approximation, which describes very well the local fields, and is 

of limited validity for the case where a strongly pronounced wave field perturbation is excited [see. 

Sec. II]. Note that in this work we have demonstrated the dominant influence of the local fields for 

the case where 1>>α  and 11 >>−
qsbkr , thus validating the assumptions used in the analysis in Ref. 

[31].  

In addition, in the pr k the enhancement of the self-focusing force in the presence 

of a weak a

esent w

a

or

gnetic field has been observed in electromagnetic particle-in-cell simulations pplied m

performed using the 2D (x,z) slice version of the LSP code. As an illustrative example, we consider 

a Gaussian ion beam pulse, ( )22 2 20.13 expb p b b bn n r r z v t l⎡ ⎤= − − −⎣ ⎦ , with effective beam radius, 

rb=0.55c/ωpe, and beam pulse half-length, lb=1.875c/ωpe (beam pulse duration τb=75/ωpe), 

propagating with velocity vb= ith density np=1010 cm-3. The 

results of the numerical simulations shown in Fig. 8 demonstrate the significant (~10 times) 

enhancement of the transverse component of the Lorentz force due to an applied magnetic field of  

0.05c through a background plasma w
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agnetic field (green, blue, and pink curves), and for the case where an external magnetic field is 

As demonstrated above, the local component of the self-electric field provides the 

rentz force for the case where 
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Bext=300 G. Figure 8 shows the total transverse focusing force (i.e., the sum of the magnetic and 

lectric component of the Lorentz force) acting on the beam ions in the presence of an applied e

m

not applied (purple curve). The units of the electric field, V/cm, are chosen for practical 

representation of its numerical value. Note that the results of the numerical simulations are found 

to be in very good agreement with the approximate analytical solution given by Eq. (34) (blue 

curve), and with the more accurate analytical solutions given by Eqs. (A1)-(A7) (pink curve).  

 

(c) Properties of a local plasma response 

 

dominant contribution to the transverse Lo 2 1ce b peα ω β ω= >>  and 

Fig. 8. Radial dependence of the normalized focusing force at the beam center. The results of the 

numerical simulations correspond to Bext=300 G and α=ωce/2βbωpe=9.35 (green curve), and  ωce=0 

(purple curve). The analytical results in Eq. (33), are shown by the blue curve, the pink curve 

demonstrates the analytical predictions obtained by performing integration in Eqs. (A1)-(A7). The beam-

plasma parameters correspond to Zb=1, rb=0.55c/ωpe, τb=75/ωpe, βb=0.05, and   np=1010 cm-3. The black 

curve corresponds to the radial beam density profile. 



1−<< emb kr  (or equivalently, 1− <<qsk pebpe crc ωααω 22 <<<< ). Form Eq. (34) it now readily 

follows that  

                                                     2 2 1 b
b x b e b

p

dnZ eE                                                   (39) Z m v
n dx

≈ ,          

r the case of  a bell-shaped beam density profile, the transverse electric self-field 

 ion beam pulse. This

and therefore, fo

produces a focusing effect on the  implies that a positive charge of the ion 

beam pulse becomes over-compensated by the background plasma electrons31. In the same 

parameter regime, the z-component of the magnetic field perturbation is specified by (see 

Appendix B) 

                                                      ( )
2

,
loc

b b pez
b

ZeB n x z
β ω

≈ − ,                                                  (40) 
e pe ce pm c nω ω

agnetic plasma response.  

at a defocusing self-electri

indicating the diam

It is interesting to note th c field and a paramagnetic plasma 

response were found for the case where 1<α  [14-15].  This means that the qualitatively different 

local plasma responses for the cases where 1<α  and 1>α  are separated by the critical case 

where 1=α , corresponding to resonant excitation of a large-amplitude wave-field perturbation. 

The analytical calculation demonstrating the drama hange of the local plasma response 

with an increase of an applied magnetic field has also been verified by the results of 2D (x,z) LS

tic c

P 

simulations (Fig. 9).  The parameters chosen for the illustrative example in Fig. 9 correspond to  

( )22 2 20.13 expb p b b bn n r r z v t l⎡ ⎤= − − −⎣ ⎦ , rb=0.55c/ωpe, lb=1.875c/ωpe, vb=0.05c, and np=1010 cm-3. 

One can readily see that the paramagnetic plasma response [Fig, 9(b)], and the defocusing effect of 

(a)] for the case where the transverse self-electric field [Fig. 9 α = 0.78, change to a diamagnetic 

plasma response [Fig. 9(d)] and a focusing effect of the self-electric field [Fig. 9(c)] for α = 9.35. 

Note that the longitudinal oscillations in Fig. 9(a) are an artifact of the numerical code, and a 

smooth longitudinal dependence can be obtained by increasing the space-time resoluti along 

with the number of macro-particles.  Figures 9(e) and 9(f) show the approximate analytical 

solutions for the transverse component of the electric field [Eq. (26)], and the longitudinal 

component of the magnetic field [Eq. (27)], respectively. Finally, note that the magnitude of the 

transverse electric field perturbation is significantly increased by an increase in the applied  

on 
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 be
 
pl

g. 9. Plots of the transverse self-electric field (left) 

am pulse with Zb=1, rb=0.55c/ωpe, lb=1.875c/ωpe

asma with np=1010 cm-3 along a solenoidal ma

and longitudinal self-magnetic (right) field of an ion 

, and vb=0.05c propagating through a background 

gnetic field. Frames (a) and (b) correspond to the results of  

 29

 
 
 

2D (x,z) LSP simulations for Bext=25 G. Frames (c) and (d) correspond to the results of 2D (x,z) LSP 

simulations for Bext=300 G. Frames (e) and (f) correspond to the approximate analytical solutions given by 

Eq. (38) and Eq. (39), respectively. Note the significantly different local plasma responses between the 

cases where α=0.78 [Frames (a) and (b)] and α=9.35 [Frames (c) and (d)]. Dashed lines correspond to 

contours of constant beam density corresponding to the effective beam radius rb. 



magnetic field [compare Figs. 9(a) and 9(c)]. This strong transverse electric field provides the 

nhanced ion beam focusing, as discussed above.  

field perturbation excited by a long ion beam 

h a neutralizing background plasma along a solenoidal magnetic field was 

udied analytically, and by means of numerical simulations using the electromagnetic particle-in-

cell co

tail. In contrast, the 

longitu

e

 
VI. CONCLUSIONS  
 

In the present paper, the electromagnetic 

pulse propagating throug

st

de LSP. It was demonstrated that the total electromagnetic field perturbation excited by an 

ion beam pulse with a smooth radial density profile can be conveniently represented as the sum of 

a local-field component, rapidly decaying to zero outside the beam pulse, and a wave-field 

component that can extend far outside the beam. The wave field is represented by a long-

wavelength electromagnetic component with |kx|=kem<ωpe/c, and a short-wavelength quasi-

electrostatic component with |kx|=kqs>ωpe/c. Note that the longitudinal component of the 

electromagnetic wave group velocity is greater than the beam velocity. Therefore, the long-

wavelength electromagnetic perturbations excited by the tail of the beam pulse can propagate 

along the beam and influence the dynamics of the beam head. The system reaches a quasi-steady-

state when the wave packet of the initial transient excitation propagates sufficiently far outside the 

beam. It was found, for a sufficiently long ion beam pulse, that the time-scale for achieving a 

quasi-steady-state can be of order the beam pulse duration, and is therefore much longer than the 

inverse plasma frequency. This result is significantly different from the case Bext=0, where the 

characteristic time to reach a steady-state is of the order of the plasma period.  

It was also shown that the wave-field excitations propagate obliquely to the beam with a 

characteristic wavelength of kz~1/lb. Therefore, their contributions to the transverse component of 

the Lorentz force can have opposite signs for the beam head and the beam 

dinal profile of the local-field amplitude is the same as the longitudinal beam density 

profile. Therefore, the transverse local fields have the same sign over the entire length of the ion 

beam pulse. It is therefore important, in practical applications involving control over the beam 

aperture, to identify the parameter regimes where the local component of the electromagnetic field 

perturbation has the dominant influence on the beam transverse dynamics. 

In this paper, it was also demonstrated, in the regime where 2ce b peω β ω>>  and 1>>kr , qsb

that the local-field component primarily determines the transverse dynamics of the beam particles; 
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and the wave fields produce a negligible transverse force. Moreover, a positive charge of the ion 

beam pulse becomes over-compensated by the plasma electrons, and the associated strong 

transve the beam ions pared witrse-focusing self-electric field has the dominant influence on , com h 

the magnetic field, provided 11 −− <<<< embqs krk . It was also shown, for the case where the beam 

radius is small compared to the electron skin depth, that the self-focusing force is significantly 

enhanced compared to the self-focusing force acting of the beam particles in the absence of an 

applied magnetic field. In addition, the local diamagnetic plasma response is observed in the 

numerical simulations, and is a alytically for pebcelso predicted an ωβω 2>> . Note that these results 

differ significantly from the case 2ce b peω β ω< , where the transverse electric field is defocusing, 

and the plasma response is paramagnetic. The qualitatively different local plasma responses are 

separated by the critical field case where 2cr
ce b peω β ω= , corresponding to the resonant excitation of 

solution was obtained for this c , and the saturated intensity of the wave-field 

perturbations, determined from the nonlinear response of the background plasma electrons, was 

estimated. In addition, a plausible applica sonant wave excitation effect for diagnostic 

purposes was discussed.  

Finally, we emphasize that the effects of an applied solenoidal magnetic field on 

neutralized ion beam transport described in this paper for the case of 2ce b pe

large-amplitude wave-field perturbations. In the ptotic time-dependent present analysis, the asym

ritical case

tion of the re

ω β ω>  can be of 

particular importance for the presently operating Neutralized Drift Compression Experiment 

NDCX-I [7] and its future up

the neu

grade NDCX-II [8]. The design of the NDC

s

X facilities first involves 

hold magne

tralized drift compression of the ion beam pulse, and then additional transverse focusing on 

the target plane by a strong (several Tesla) final-focus solenoid. The thre tic field in 

the inequality 2ce b peω β ω>  corresponds to a relatively weak magnetic field of the order of 10 G 

(for NDCX-I) and 100 G (for NDCX-II). Therefore, the magnetic fringe fields of the final-focus 

solenoid above this value can penetrate deep into the drift section. In particular, these fringe fields 

provide conditions for enhanced beam self-focusing, which can have a significant influence on the 

transverse beam or the parameters characteristic of NDCX-II.  

 

 

 dynamics f
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APPENDIX A:  ELECTROMAGNETIC FIELD PERTURBATIONS FOR THE CASE OF 

ARBITRARY RATIO OF ce peω ω   

 

Equations (10)-(15) can be generalized to the case of an arbitrary ratio of ce peω ω . 

Assuming ~ ,b b pe cev lω ω ω<<  and ,,b b em qsl r k>> , after some straightforward algebra one ca

show that the electromagnetic er

1−�

turbations for

n 

 field p  are given by  2
,0 b em qsx l k< << �

                                                  ( ) ( )2W
y pe b beB Z

b b
πω β

= + ,                                            (A1) 

                             

2 2 em qs
e pe p qs emm c cn k kω −� �

                   
( ) ( )

2W
x b ce

e pe p pe qs

eE e e= + ,                                         (A2) 2 2

2
em qs

em

Z
m c cn k k

π ω
ω ω −� �

( ) ( ) (
2

2 ),2
0

, co
1

pe
z qs em z

ce pe

dk n k k
ω
ω ω

∞⎛ ⎞

+ ∫ k
� � �

, , ,2 2 sqs em qs em z qs emb k k k x
c

ξ= ± +⎜ ⎟⎜ ⎟
⎝ ⎠

∓ ,                  (A3)                    

( ) ( ) (2 2 2 ),
0

1 , cosce pe z qs em zdk n k kω ω
∞

+ ⎦ ∫ k
� � �

, , ,qs em qs em z qs eme k k k xξ⎡ ⎤= ± ⎣ ∓ ,                    (A4)                         

( )( )
2 2

2
2 22 2 2 2 1

xz

loc
y pe b b xik xik

z x x
pe

e ceC p x em x qs

eB Z k c
i dk e dk e n k

c cn k k k k
ξ ω β ω

ω ω ω
+

∞

−∞

⎛ ⎞
= − +⎜ ⎟

+− − ⎝ ⎠
∫ ∫ k � �               

e p pem
,             (A5) 

( )
( )( )

3 2 2 2

2 2 2 2

1
xz

loc
b x ce ce peik xikx

z x
e pe C p pe x em x qs

Z keE i dk e dk e n
m c cn k k k k

ξ ω ω ω
ω ω

+

∞

−∞

+
= −

− −∫ ∫ k �                           � .                          (A6)      

Here, are the solutions to the generalized dispersion relation 

                                    

,em qsk�

( )2 22 4 6
4 4 2 2

2 2 2 2

12
1 0b pepe pe pe

x x
ce ce b ce

c k c k
β ωω ω ω

ω ω β ω
⎡ − ⎤⎛ ⎞

+ + − + =⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

.                             (A7) 

7) describe the electromagnetic field perturbation excitedEquations (A1)-(A  by an ion beam pulse 

for an arbitrary ratio of ce peω ω  velocity, including the 

case of a relativistic ion beam. The dynamics of the background plasma electrons, however, are 

tivistic, which requires that the beam density be m

density (nb<<np).  

, and furthermore for an arbitrary beam

assumed to be nonrela uch smaller the plasma 
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The onset of wave generation, corresponding to the existence of real solutions to Eq. (A7), 

is now determined by the condition ( )21 2 1ce b b peα ω β β ω= − >� . In the limit where 1~ >>α  and 

1bβ << , the solutions to Eq. (A7) can be approximated by ( )1 22 22 1qs pe ce pek cαω ω ω⎡ ⎤= +⎣ ⎦
�  and 

( )2em pek cω α=� , where 2ce b peα ω β ω= . Making use of Eqs. (A1)-(A6), we can then reproduce 

e find that the asymptotic

critical case corresponding to 

the main  results obtained earlier in the present paper. Repeating the analysis performed in Sec. III, 

after some straightforward algebra, w  time-dependent solution for the 

1~ =α  is given by  

                                   
( )

( )

2

2 2 2 2 2ph
e p c pe z x k k

m k c V kω ω
=

+ ∂ ∂ �

� �

� �
,                               (A8) 

                                        

sin ( )
4

x c

y
b c pe b c z

pe

k Z k x N zeB t
c n

β ω
π=

( ) ( )
0

where the critical value of the wave vector, 

( )[ ]∫
∞

+= sincos,~ ξξ zzzczzz kkkknkdkN k ,                                      (A9) 

ck~ , corresponding to the solution of Eq. (A7) for 

1~ =α , is given by  
1 222

2 2 2 2

1 1
1 1

peb
c

b ce pe

k
c
ωβ

β ω ω
⎛ ⎞+

= ⎜ ⎟⎜ − + ⎟⎡ ⎤⎣ ⎦⎝
�                                              

⎠
,                                                (A10)  

and the longitudinal component of the wave phase velocity is defined by  

                                
( )2 2 2 2 2 2 2 21

z wh x c
ph

z x pe x ce pe pe

kV
k k c k c

ω ω

ω ω ω ω
= =

+ ⎡ + + ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦

� .                          (A11) 

he analysis performed in Sec. V

one can demonstrate that for a non-relativistic beam

�

Similarly, repeating t , after some straightforward algebra 

, 1<<bβ , with 1~
>>qsbkr , the total wave-field 

and the transverse force 

l field perturbation is still determined by Eq. (22), i.e.,  

                                                         

contribution to the transverse component of the Lorentz force vanishes, 

produced by the loca

2 2 1 b
x b e b

pn dx
 

 

dnF Z m v= .                                                          (A12) 
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APPENDIX B: AXIAL MAGNET ATION AND LOCAL IC FIELD PERTURB

DIAMAGNETIC PLASMA RESPONSE FOR 2 1ce b peα ω β ω= >>  

 

Making use of Eq. (1), after some straightforward algebra we find that the longitudinal 
occomponent of the magnetic field perturbation is given by z z z

W lB B B= + , wh

component, loc
z

ere the local 

B , and the wave component, W
zB , are specified for by                                            

                                         

2
,0 b emx l k< << �
qs

( ) ( )2W
b ce pe w qsz

ZeB b b
π

2 2 z z
e pe p qs emm c n k k

ω ω
= + ,                                           (B1) 

                             

ω −� �

( ) ( ) ( ), 2 2
, ,

em qs
z em qs c p z em qs z

∞

k
� �

,
0

1 , sin z em qsb k dk n k k k z k xω ω⎡ ⎤= + ±⎣ ⎦ ∫ � ,                    (B2) 

           
( )

( )
                       

( )
2 2 2

2 2 2

1
xz

loc
b x ce peik xik

z x
C p x em x qs

Z keB dk e dk e n
c n k k

ξ ω ω ω ω∞ +

−∫ k �

It follows for the case of a nonrelativistic beam, βb<<1, propagating through a background plasma 

2 2
ce pez

e pem c k kω −∞

=
−∫ � .                          (B3) 

with 2 1ce b peα ω β ω= >> , that the local z-component of the magnetic field perturbation is much 

greater than the wave-field z-component, and is given approximately by 

                                                       ( )
2

,
loc

b b pez
b

e pe ce p

ZeB n x z
m c n

β ω
ω ω

≈ − ,                                                (B4) 

provided the beam radius rb satisfies 1 1
qs b emk r k− −<< <<� � , or equivalently, 

( ) ( ) peb crc ωα21 <<+  in the limit 1>>pepc αωωω 222 << α .  Equation (B4) demonstrates the 

diamagnetic plasma response, in accordance with the results obtained in the numerical simulations.  

re 2ce b pe 1α ω β ω= ≈ , assuming a nonrelativistic ion beam,  For the critical case whe

1<<bβ , after some straightforward algebra it follows from Eqs. (B1)-(B2) that 

( ) ( )2eB m cz e b peα β ωΔ ≡  can be estimated by 

( )( ) ( ) 1 22 1b b p b pen r c
−

− ⎤~ 1Z nα ω αΔ ⎡ + Δ                                             ⎣ ⎦

provided the beam radius is of the order of or smaller than the electron skin depth.  Note that in 

obtaining Eq. (B5), we have used the fact that 

,                                  (B5) 

pece ωω << , which is required by the resonance 

condition, 2 1ce b peα ω β ω= = , for the case of a nonrelativistic ion beam pulse.  
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